TECHNISCHE
TUTT voveesrs
MUNCHEN

Software Engineering in der industriellen Praxis (SEIP)

Dr. Ralf S. Engelschall

F ENGINEERING TECHNISCHE

FUNDAMENTALS S ftw CI m UNIVERSITAT

o3 oriware Liasses MONCHEN
Custom Software Development CcSsD Standard Software Development STD Open Source Software Development OSS

Commercial development of Commercial development of Non-commercial development of
non-standardised, fully individualised, standardised, partially customisable, standardised, highly customisable,
and non-reusable company-specific and fully reusable domain-specific and fully reusable generic software
software for a single customer. software for many customers. for many customers.

Class: Development & Tools

target audience: vendors & suppliers

Graphics Editing Application =~ GEA Office Productivity Application OPA Technical Control System TCS Software Development Kit SDK

Software for editing and Software for productivity Software for controlling a Software libraries and frameworks

rendering graphics in vector in the desktop-based physical machinery or of reusable functionality for

and bitmap format. office environment. technical system. developing software.

Examples: Cinema4D, Maya, Blender, . Examples: PowerPoint, Excel, Word, . Examples: AquaTherm, AVM! Gy Examples: NDI SDK, HAPI, .

After Effects, lllustrator, Inkscape, STD Visio, OmniGraffle, LibreOffice, FritzBox Firmware, BirdDog STD GraphQL-10, Sequelize, JDK, STD

Scribus, Photoshop, GIMP, etc. m Outlook, XMind, Firefox, Chrome, etc. m Camera Firmware, etc. m Spring, Hibernate, etc. m
Graphics Animation Engine GAE Business Information System BIS Network Communication System NCS Software Development Tools SDT ”‘i
Software for animating the Software for driving business Software for protocol-based Software tools for editing, linting, 3 %
2D/3D virtual worlds of games processes through interactive communication of data over a compiling, packaging, distributing, s
and overlays of TV productions. information management. computer network. and installing software. EEY
Examples: Unity, Unreal Engine, csb Examples: Vote, Camp$S, Mission CsD Examples: Apache, NGINX, HAProxy, ‘ Examples: Visual Studio Code, . 2

CryENGINE, Godot, HUDS, SPX-GC, STD Control, IPW, KEZ-PSC, TimeSheet, STD Mosquitto, RabbitMQ, Node-RED, STD Sublime Text, GCC, GNU Binutils, STD
Holographics, H2R Graphics, etc. m SAP ERP, OpenProject, etc. m KeyCloak, etc. m NPM, JDK, Docker, Helm, etc. m

Audio/Video-Processing System AVS Data Management System DMS Operating System Kernel OSK Operating System Tools OST

'AJUO $1X21U0D 3IN1D3| 3

Q
. . . 2
Software for live-processing and Software for protocol-based Software kernel for low-level Software tools for high-level &
post-production of audio/video storing and retrieving of operating a physical or virtual operating a physical or virtual 8
based multimedia streams. persistent data. device and run programs on it. computing device. 8
s s s S0, Re
Examples: vMix, OBS Studio, VLC, m Examples: NextCloud, PostgreSQL, u Examples: Windows, macOS, iOS, u Examples: Coreutils, Bash, m %‘
Lossless Cut, Handbrake, Adobe STD CockroachDB, Redis, InfluxDB, Neo4J, STD Linux, FreeBSD, QNX, ChibiOS/RT, STD Vim, TMux, FZF, cURL, STD 'E\
Premiere, FFmpeg, Nimble, etc. Tendermind, Gitea, Vault, etc. Kubernetes, Wildfly, etc. RSYNC, OpenSSH, etc. Q
| 055 | [055 | [055 | | 0sS | 2
Sy

TECHNISCHE
UNIVERSITAT
MUNCHEN

f= oo Software Development Approaches TLT!

Development Approaches

0/0\9
%
®
%,
%
(%
®
%
Lo

Software Prototyping mocking SP Continuum & Process . S
$ 3 g W o
The four development approaches do not form O & 5 @ o O ,50 e C
Develop an early sample or a hierarchy, but can be combined in practice: 'Q'b* 2 Qg,bq ,30\\ é,\e boé' ,(i,\o) &\(Q)
model of a software solution by Prototyping and Bricolage can be earlier K & ¥ ’b(’z «69 o ‘_)\)‘9 O’b\ & &%
mocking and cheating in order r stages of Craftsmanship or Engineering. o2 QQ}"’ X &\ : (8 % S ((’\/ Q'.\’
IS - t id Craftsmanship can be part of Bricolage or & & Qj—;"’ & O R O &,\ R O
QIEISHOCCESUAICONEERFICEd Engineering. Each approach requires a special &O &O \o(’ koc’ c}o 0\0 139 (,’O\ o\‘\' o\\)
Oor process. skill (mocking, integrating, crafting, teaming). R R))) <
Example: Customer Sales Demo . (A igiss @l U i g
SOftWa re Prototyplng 1-20 1-2 - - - - - 5% 0-3 0-3 orders of magnitude i
for indication and 3
illustration purposes. 2
Software Bricolage integrating SB Software Bricolage 5100 12 - - X () - 60% 3-24 1-10
Develop a single instance of a Key M
SO e UL Software Craftsmanship [ES[CRENEAE - X X X 100% 2448 525

cobbling and integrating partial
solutions in order to prove

All four approaches
are equally essential

feasibility or just provide a service. Software Engineering >150 5-50 X X X X X 80% >48 >25 in practice. Which
one(s) to choose,
entirely depends
Example: Company-Internal SaaS on the particular
requirements. '
Software Craftsmanship crafting SC
; Software Software Software Software
Develop a production-grade Prototyping Bricolage Craftsmanship Engineering
software solution by professional, 82
clean but plain craftsmanship Performance One-Man-Show One-Man-Show One-Man-Show Team Play Gl
means in order to solve a usually Responsibility Single Single Single Separated ge
complicated problem. Model Mental Mental Mental/Documented Documented g
Decisions Implicit Implicit Implicit/Explicit Explicit ;
Example: Open Source Framework Process Minimized Partial Partial Complete =
Optimisation Time Efficiency Effectiveness Economics
Software Engineering teaming SE Risks Ignore Ignore Ignore Mitigate
Stakeholders Ignore Ignore Ignore Manage
Develop a production-grade # Mastering Time-Constraint Complexity Complication Complexity
spr(t\;\l/a:je sc:jlutlor) byaf prOfessmn;;:, # Solutions Use Full Use Partial Use Partial Use Partial %
ISk de 9g¢ elnglneerlnlglg approac # Standards Use Use Potentially Create Use],
I G D OIS EIELE Efforts Configuration Integration Programming Programming R
complex problem. o
Target Demo Solution Product Product kS|
i i Sustainabilit N Partial Full Full E
Example: Business Information System Uiz IO gy © BIATE] u u 3
Traceability No No Partial Full 2
>

£ rosen Software Engineering TUTI %5

Engineering

The collection of physical The collection of physical The collection of instructions
components of a mechanical components (machinery) and data that tell a computer
apparatus using electrical power to ~——p» of a computer system. ———Jp system how to work.
perform a certain task. =~ =~

o] O

© ©

() ()

8 gz

= o

(9]

g &

created by created by

Software Engineering (transferred)

Engineering

The systematic application of scientific and The systematic application of scientific and

transferred to

technological knowledge, principles, > technological knoyvledge, principles,
approaches, practices, methods, and approaches, practices, methods, and
experiences, to design, build, operate, and experiences, to design, build, operate, and
maintain complex production-grade maintain complex production-grade software

solutions through a traceable process. * solutions through a traceable process.

Engineering: derived from the
Latin words ingeniare (to create,
generate, contrive, devise) and
ingenium (cleverness).

taking into account simplified to

paniasay

A|UO S1X21U0D 3IN1D3|

Engineering Code of Conduct Software Engineering (simplified)

Commit yourself to the highest ethical and

professional conduct, accept responsibility in

making decisions consistent with the safety, <
health, and welfare of the public, apply the

state of the art in science and technology of

your field, perform services only in areas of

your competence, and comply with the

principles of sustainable development. *

also taking The systematic application of engineering
into account knowledge, principles, approaches,
practices, methods, and experiences to
the development of software.

* derived from definitions and Code of Ethics
statements of ASCE, NSPE, ACM, IEEE, etc.

sowy1a 2 uoissafoud

ENGINEERING
FUNDAMENTALS
a

practical

‘©
O
=)
()
S
)
(D)
e
+—

Profession Characteristics TUTl =~

Ccreative

involving the use of
strong imagination
and original ideas

rational

involving the use of
analytical thinking
and logical reasoning

~
Handwerker Ingenieur
X . Obijectives: Software Engineering: Objectives: Software Engineering:
involving the solve problems . Programming solve problems Estimation
actual doing and create uniques I I Configuration create solutions Automation
real application - -
of something G
(|]
INVENTOR I - '
Erfinder
J
)

involving the
manifested
imagination or
analytical study
of something

ARTIST

Kinstler

Objectives: Software Engineering:
create beauty Visual Design

create uniques Coding Style

SCIENTIST

Wissenschaftler

Objectives: Software Engineering:
analyse problems Methodology
create knowledge User Research

)

v'10 JEE]

IeYDS[2BU3 S Jley I AQ $Z0Z PRIOYINY ‘(01-90-720¢) 00T L UOISIIA :1USIUOD [en1a]ja1u|

paniasay S1ybIY ||y ‘<wodeydsiabua/dny> [jeyds|abls s ey 14 207 © Jqﬁ\jdoj (01-90-207) 0°0'L UOISIaA :uonensny|| [eaiydeisy

T[] uo s1xe1u02 21n1d3| 2dUBS JINdWOD) Ul UoRPNPOIdaI JO) (WNL) USYDUNA 1BYISISAIUN 3UDSIUYD3| O3 pasudr PRUGIY0Id uononpoiday pazLoyineun

ATIN-NIX D

ENGINEERING
FUNDAMENTALS
a

FA FARSIGHTED
weitblickend

Be farsighted in your
solution finding.

Sei weitblickend in deiner
Losungsfindung.

AR: Scalable Hub'n'Spoke
DV: Plugin SPI

H HOLISTICALLY

ganzheitlich

Think holistically and in the long-
term when finding your solutions.

Denke ganzheitlich und langfristig in
deiner Losungsfindung.

AR: Walking Skeleton Design
DV: Consistent Error Handling

I N INCREMENTAL

inkrementell

Apply the depth of your discipline
incrementally.

Wende die Tiefe deiner Disziplin
inkrementell an.

AR: Identified Solution Cruxes
DV: Minimum Viable Product

grundsatzorientiert

Orientate yourself on fixed tenets in

your approach and solution finding.

Orientiere dich an festen Grundsatzen
in deinem Vorgehen und deiner
Losungsfindung.

AR: Separation of Concern
DV: Strict Coding-Style

A ADEQUATE

angemessen

Ensure that your approach and
solutions are adequate to the
boundary conditions.

Sorge dafr, da8 dein Vorgehen und
deine L6sungen angemessen zu den
Rahmenbedingungen sind.

AR: No Cloud-Native Complexity
DV: No Over-Engineered Abstractions

v VALUEABLE

Welgaell

Provide clearly recognizable added
values with your approach and
solutions.

Liefere klar ersichtliche Mehrwerte mit
deinem Vorgehen und deinen Losungen.

AR: Technology Stack Design
DV: User-Story-Driven Functionality

Discipline Claim

T TENET-ORIENTED

TUm

T THOUGHTFUL

wohlUberlegt

Act thoughtful in your approach
and solution finding.

Agiere wohlUberlegt in deinem
Vorgehen und deiner Losungsfindung.

AR: Modularization
DV: Algorithmical Control Structure

F E FEASIBLE
machbar
Ensure that your approach and

solutions can be realised at
reasonable costs.

Sorge dafur, dal3 dein Vorgehen und
deine Losungen mit vernlnftigen Kosten
realisiert werden kdnnen.

AR: Existing Framework Functionality
DV: Realistic Programming Model

S SUSTAINABLE
nachhaltig

Create sustainable solutions that are
well integrated into their
environment.

Erschaffe nachhaltige Losungen, die
gut in ihre Umgebung integriert sind.

AR: Interoperable Interfaces
DV: Maintainable Code

TECHNISCHE
UNIVERSITAT
MUNCHEN

Youniy 1elisis,
U3 'S Jjey 1d T
3°SJley ua Ag

us
b

PanIasay s1ybIY |1y ‘<wod]eydsebus//d

'AJUO S1X31U0D 21N123] 9UIDS J2INdW0?) Ul toiaNpoid

wowams - Software Engineering Metamodel

Craftsmanship Model 4 Discipline Model 1 Workflow Model 2 Process Model 3
WHEREBY & HOW HOW & WHAT WHAT & WHO WHO & WHEN

Know how in a profession to
operationally perform
certain practices with the
help of templates and tools.

Profession

A person’s occupation, founded v

Based on personal inclinations,
understand how to act in area-
grouped disciplines and create
artifacts and their aspects.

suitable for A person’s natural tendency or

upon specialized educational
training and formal qualification.

ﬁ

Distinct overall knowledge on
how to perform certain tasks.

1+

Practice

Distinct steps to perform a +

urge to act or feel in a certain

way.

Logical group of strongly 1F
related disciplines.

{.

Discipline

correlates to

operationalised by Distinct knowledge, + corresponds to

certain task with the help of a
certain know-how and
template.

V.

The initial version of an artifact +

responsibility and objectives

within Software Engineering.

V.

derived from Single representation of an

in order to speed up and/or <%
support crafting the artifact.

+

Software application to create
an artifact from scratch or from
a template and further edit it.

internally used and/or
externally delivered result.

{.

Understand the workflow of
separate iterating cycles and
work streams, comprised of
one or more steps.

The five distinct iteration cycles
Product Management, Business,
Development, Operations and
Project Management.

+

Logical iteration cycle of a

Map activities onto a project
execution schedule, based on
horizontal team focus tracks
and vertical temporal project
periods and phases.

Distinct responsibility and goal
of an individual person.

—_

serialized by Work stream consisting of a

sequence of strongly related
and dependent workflow steps.

Y)

Single step in a workflow cycle

> continuously sequence of steps
of a workflow cycle.

{.

Activity

operationalises 1 Distinct activity in the process

with a clear logical previous and
next step in the logical work

flow.
t +

Logical sequence of
interweaved, inter-cycle,
optionally skipped, and
dependent steps.

4 to perform a certain task or
complete a particular work-

t+

Minor time period in the
process, to split the project
phases into distinct time-, cost-,
or scope-based time units.

+

package.

Key Message

Mastering Software Engineering means to
understanding (in this order) Discipline,
Workflow, Process and Craftsmanship
models. Especially, never start with a
particular Process model, as it is secondary!

Major time period in the process,
to split the project into distinct
focus periods, separated by
major milestones.

Smallest result unit of an
artifact which can be created
separately.

1'zo JEE]

aneun
ydeiny

)2) ¥’ L UOISI9A US1UOY) [emda|@1u]

pasuadi ‘P3UAIYoId uondNpoiday paziioy

Ia)

P
<]
]
S
>
=
o
<

o

5

1207 014

SAIUN BYISIU

JleYyds|abuT 'S Jjey uC

N1) UsYPUNW 28

=2
RN
52
S8
23
a

55
e
Sn
28
5

33
oV
3>
2=
S
BG

S

paniasay siy

'AUO SIX3IUO 3INID3| BDUSID!

Adua.aoy00 29 aunjoid bHiq

ENGINEERING ° ° ° ° ° TECHNISCHE
[woems Software Engineering Disciplines TUTI v
"o [anchnmecrune B

CF
o
Software Requirements REQ Software Architecture W SWA Software Versioning VER Software Reviewing REV Product Management PRD B

Identify Needs: Design Software: n Version Artifacts: Review Code: Push Product: B
We understand which We design an e We place every artifact We regularly and e We continuously push
outcomes of the solution orthogonal, well- of the solution under semantically peer-review the development and
are most valuable to balanced and well- strict version control. the source code of the release of the solution
users. considered solution. solution. to the users.
Requirements Engineer / Product Manager /
Business Analyst Software Architect Configuration Manager Software Tester Product Owner
Domain Modeling DOM System Architecture SYA Software Testing TST Project Management PRJ
Determine Solution: Design Systems: Assemble Artifacts: Test Solution: a Steer Process:
We model and specify We ensure that the We build and package We adequately test the We rigorously balance
the solution through e solution fits optimally the solution through an functional and non- time, cost and scope to
involved functional and into its environment. automated and functional aspects of react on changes and
non-functional aspects. repeatable mechanism. the solution. reach the goals.
Business Analyst/ System Architect/ Build Manager /
Business Architect Enterprise Architect Build Engineer Software Tester Project Manager

business-oriented & domain-specific constructive & technological infrastructural & technological analytical & domain-specific people-oriented & process-oriented

ADJUSTMENT AD

ex | DEVELOPMENT DV | DELIVERY DL
User Experience Software Development DEV Software Deployment DPL

Usage Documentation DOC Project Coaching COA
Optimize Workflows: B Implement Code: Deploy Artifacts: Document Solution: a Support Members: iz
We align the solution to We develop the solution e We ship and deploy We adequately W We ensure that project éf
the perspective of the outside-in, from coarse the solution through an document the usage members use state-of- -
target audience. to fine aspects. automated and and operation of the the-art methodology, 4
repeatable mechanism. solution. technology, and tools. -
Software Engineer / Project Coach /
User Experience Expert Software Developer System Engineer Technical Writer Methodology Master -
S
Q
User Interface uiD Software Refactoring REF System Operations OPS User Training TRN Change Management CHG §'
Q
Design User Interfaces: Refactor Code: n Operate Solution: Train Users: Involve Stakeholders: a g-
We design a useful, we We regularly and We ensure that our infra- We adequately train We ensure that all EO
intuitive, and beautiful holistically refactor the structures and the solution the users and operators stakeholders of the =~
user interface for the solution to ensure long- can be operated in a of the solution. solution are s
solution. term quality. resilient and secure way. suitably involved. EN
User Interface Designer / Software Engineer / System Administrator / &
Graphics Designer Software Developer System Operator Product Expert Change Manager Q

WB white-box view (details before whole) black-box view (whole before details) scalability layer (from 4/most to 1/least dispensable)

	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1

