
Software Engineering in der industriellen Praxis (SEIP)

Thank you for �ying Industry Airlines.
Lecture End

To be continued.
Lecture Gap

Let’s have a meal!
LUNCH

Let’s breathe deeply!
BREAK

Fasten your seatbelts, please.
Lecture Start

Dr. Ralf S. Engelschall

Class: Business & Data

O!ce Productivity Application

Software for productivity
in the desktop-based
o!ce environment.

Examples: PowerPoint, Excel, Word,
Visio, OmniGra"e, LibreO!ce,
Outlook, XMind, Firefox, Chrome, etc.

OPA

Business Information System

Software for driving business
processes through interactive
information management.

Examples: Vote, CampS, Mission
Control, IPW, KEZ-PSC, TimeSheet,
SAP ERP, OpenProject, etc.

BIS

Technical Control System

Software for controlling a
physical machinery or
technical system.

Examples: AquaTherm, AVM!
FritzBox Firmware, BirdDog
Camera Firmware, etc.

TCS

Data Management System

Software for protocol-based
storing and retrieving of
persistent data.

Examples: NextCloud, PostgreSQL,
CockroachDB, Redis, In#uxDB, Neo4J,
Tendermind, Gitea, Vault, etc.

DMS

Network Communication System

Software for protocol-based
communication of data over a
computer network.

Examples: Apache, NGINX, HAProxy,
Mosquitto, RabbitMQ, Node-RED,
KeyCloak, etc.

NCS

Operating System Tools

Software tools for high-level
operating a physical or virtual
computing device.

Examples: Coreutils, Bash,
Vim, TMux, FZF, cURL,
RSYNC, OpenSSH, etc.

OSTOperating System Kernel

Software kernel for low-level
operating a physical or virtual
device and run programs on it.

Examples: Windows, macOS, iOS,
Linux, FreeBSD, QNX, ChibiOS/RT,
Kubernetes, Wild#y, etc.

OSK

Software Development Kit

Software libraries and frameworks
of reusable functionality for
developing software.

Examples: NDI SDK, HAPI,
GraphQL-IO, Sequelize, JDK,
Spring, Hibernate, etc.

SDK

Software Development Tools

Software tools for editing, linting,
compiling, packaging, distributing,
and installing software.

Examples: Visual Studio Code,
Sublime Text, GCC, GNU Binutils,
NPM, JDK, Docker, Helm, etc.

SDT

Class: Machinery & Network Class: Development & Tools

Custom Software Development

Commercial development of
non-standardised, fully individualised,
and non-reusable company-speci$c
software for a single customer.

CSD Standard Software Development

Commercial development of
standardised, partially customisable,
and fully reusable domain-speci$c
software for many customers.

STD Open Source Software Development

Non-commercial development of
standardised, highly customisable,
and fully reusable generic software
for many customers.

OSS

!

"

$

%

& '

(

)

* + ,

STD

CSD

STD

OSS OSS

OSS

OSS

OSS

STD

CSD

STD

STD

OSS

STD

STD

STDSTD

OSS OSS

OSS

Bu
sin

es
s

CSD

CSD

CSD

CSD

CSD

CSDCSD

target audience: consumers & enterprises target audience: consumers & enterprises target audience: vendors & suppliers

Class: Graphics & Media

Graphics Animation Engine

Software for animating the
2D/3D virtual worlds of games
and overlays of TV productions.

Examples: Unity, Unreal Engine,
CryENGINE, Godot, HUDS, SPX-GC,
Holographics, H2R Graphics, etc.

GAE

Audio/Video-Processing System

Software for live-processing and
post-production of audio/video
based multimedia streams.

Examples: vMix, OBS Studio, VLC,
Lossless Cut, Handbrake, Adobe
Premiere, FFmpeg, Nimble, etc.

AVS

Graphics Editing Application

Software for editing and
rendering graphics in vector
and bitmap format.

Examples: Cinema4D, Maya, Blender,
After E%ects, Illustrator, Inkscape,
Scribus, Photoshop, GIMP, etc.

GEA

STD

OSS

CSD

target audience: consumers & enterprises

STD

CSD

OSS

STD

OSS

CSD

-

.

/

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.1.1 (2022-12-10), Authored 2021-2022 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.1.0 (2022-10-29), Copyright ©

 2021-2022 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
EF

01.1

Software ClassesENGINEERING
audience &

 deliverable

Development Approaches

Software Prototyping

Develop an early sample or
model of a software solution by
mocking and cheating in order
to just once test a concept, idea
or process.

Example: Customer Sales Demo

Software Bricolage

Develop a single instance of a
software solution by tinkering,
cobbling and integrating partial
solutions in order to prove
feasibility or just provide a service.

Example: Company-Internal SaaS

Software Craftsmanship

Develop a production-grade
software solution by professional,
clean but plain craftsmanship
means in order to solve a usually
complicated problem.

Example: Open Source Framework

Software Engineering

Develop a production-grade
software solution by a professional,
risk-hedged engineering approach
in order to solve a usually
complex problem.

Example: Business Information System

Software Engineering

Software Craftsmanship

Software Bricolage

Software Prototyping

5-50

1-2

1-2

1-2

x

-

-

-

x

-

-

-

x

x

x

-

x

x

(x)

-

x

x

-

-

80%

100%

60%

5%

>48

24-48

3-24

0-3

E!
ort:

Perso
n-D

ays

Solutio
n: Ta

rget Te
ch

nology

E!
ort:

Perso
ns

Solutio
n: C

laim

Solutio
n: P

roductio
n-G

rade

Solutio
n: S

usta
inabilit

y

Solutio
n: Life

-Tim
e M

onths

Proce
ss:

 Risk
-H

edge

Proce
ss:

 Trace
abilit

y

Development Approaches: Characteristics Comparison *

Development Approaches: Success Patterns

>150

5-100

5-100

1-20

>25

5-25

1-10

0-3

Solutio
n: Lines o

f C
ode (k

)SP

SB

SC

SE

The four development approaches do not form
a hierarchy, but can be combined in practice:
Prototyping and Bricolage can be earlier
stages of Craftsmanship or Engineering.
Craftsmanship can be part of Bricolage or
Engineering. Each approach requires a special
skill (mocking, integrating, crafting, teaming).

Continuum & Process

All four approaches
are equally essential
in practice. Which
one(s) to choose,
entirely depends
on the particular
requirements.

Key Message

* All "gures are just rough
 orders of magnitude
 for indication and
 illustration purposes.

mocking

integrating

crafting

teaming

Software
Engineering

Software
Craftsmanship

Software
Bricolage

Software
Prototyping

Team Play
Separated
Documented

Explicit
Complete
Economics

Mitigate
Manage
Complexity

Use Partial
Use
Programming

Product
Full
Full

One-Man-Show
Single
Mental/Documented

Implicit/Explicit
Partial
E!ectiveness

Ignore
Ignore
Complication

Use Partial
Potentially Create
Programming

Product
Full
Partial

One-Man-Show
Single
Mental

Implicit
Partial
E"ciency

Ignore
Ignore
Complexity

Use Partial
Use
Integration

Solution
Partial
No

One-Man-Show
Single
Mental

Implicit
Minimized
Time

Ignore
Ignore
Time-Constraint

Use Full
Use
Con#guration

Demo
No
No

Performance
Responsibility
Model

Decisions
Process
Optimisation

Risks
Stakeholders
Mastering

Solutions
Standards
E!orts

Target
Sustainability
Traceability

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.4 (2022-11-10), Authored 2021-2022 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.3 (2021-10-25), Copyright ©

 2021 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
EF

01.2

Software Development ApproachesENGINEERING
goal &

 approach

Engineering Software Engineering

Hardware

The collection of physical
components (machinery)
of a computer system.

Software Engineering (transferred)

The systematic application of scienti!c and
technological knowledge, principles,
approaches, practices, methods, and
experiences, to design, build, operate, and
maintain complex production-grade software
solutions through a traceable process.

Engineering

The systematic application of scienti!c and
technological knowledge, principles,
approaches, practices, methods, and
experiences, to design, build, operate, and
maintain complex production-grade
solutions through a traceable process. *

Software Engineering (simpli!ed)

The systematic application of engineering
knowledge, principles, approaches,
practices, methods, and experiences to
the development of software.

Engineering Code of Conduct

Commit yourself to the highest ethical and
professional conduct, accept responsibility in
making decisions consistent with the safety,
health, and welfare of the public, apply the
state of the art in science and technology of
your !eld, perform services only in areas of
your competence, and comply with the
principles of sustainable development. *

transferred to

also taking
into account

op
er

at
ed

 b
y

simpli!ed to

created bycreated by

taking into account

!

"

#

"

"

$%

sp
ec

ia
lis

ed
 b

y

* derived from de!nitions and Code of Ethics
 statements of ASCE, NSPE, ACM, IEEE, etc.

Engineering: derived from the
Latin words ingeniare (to create,
generate, contrive, devise) and
ingenium (cleverness).

Wording

Machinery

The collection of physical
components of a mechanical
apparatus using electrical power to
perform a certain task.

&

Software

The collection of instructions
and data that tell a computer
system how to work.

' Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.2 (2021-09-06), Authored 2021 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.2 (2021-09-11), Copyright ©

 2021 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
EF

01.3

Software EngineeringENGINEERING
profession &

 ethics

targeted

◎T
adequate
suitable
focused

Statement: We focus on adequate
and suitable solutions
and approaches.

Rationale: Both solutions and approaches
have to be in a reasonable
proportion to the problem.

Implications: We avoid both over-engineered and
cobbled-together solutions.

We avoid “one-size-!ts-all”
approaches.

We suitably adapt solutions, tools
and methods.

up-to-date

"U
educated
experienced
insistent

Statement: We develop high-quality
solutions on the basis of
up-to-date methods
and technologies.

Rationale: We have to cope with the fact that
the IT world is recurrently
revolutionizing itself.

Implications: We continuously educate ourselves.

We continuously and critically
challenge and assess emerging
approaches and products.

We are not satis!ed with mediocre
solutions.

evolutionary

#E
sustainable
harmonic
contextual

Statement: We develop sustainable
solutions that optimally
!t into their context.

Rationale: Nature teaches us that only
evolutionary approaches and
solutions have a good chance to
survive in the long run.

Implications: We actively learn from experiences of
the past in order to improve the future.

We avoid “quick hacks”, as they are not
long-term solutions, but just short-term
means to get rid of problems.

We assure that our solutions can be
reasonably maintained in the long-term.

reasoned

$R
considered
assessed
deliberate

Statement: We think carefully and
holistically in advance about
our solutions and approaches.

Rationale: We always think large, even if we
have to act small, because thinking
in advance is more e!cient and
e"ective than correcting afterwards.

Implications: We always develop the “big picture” !rst
and add ancillary details as late as possible.

We are opinionated and steadfast
regarding our decisions and solutions.

We know that conceptual modeling is
key to understanding both problems
and solutions.

true-manifesto.org

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.7 (2021-10-25), Authored 2019-2021 by D
r. Ralf S. Engelschall, Christian Reiber, Rudolf Koster and M

atthias Brusdeylins
G

raphical Illustration: Version 1.0.7 (2021-10-25), Copyright ©
 2019-2021 D

r. Ralf S. Engelschall <http://engelschall.com
>, All Rights Reserved.

U
nauthorized Reproduction Prohibited.

EF
01.4

TRUE ManifestoENGINEERING
entitlem

ent &
 values

Craftsmanship Model Discipline Model Work!ow Model Process Model

Minor time period in the
process, to split the project
phases into distinct time-, cost-,
or scope-based time units.

Period

Work stream consisting of a
continuously sequence of steps
of a work!ow cycle.

Track

Distinct activity in the process
to perform a certain task or
complete a particular work-
package.

Activity

Single representation of an
internally used and/or
externally delivered result.

Artifact

+

+

+

++

+

+

+

+

+

+

+

1

1

+

+

Logical sequence of
interweaved, inter-cycle,
optionally skipped, and
dependent steps.

Flow

+

HOW & WHATWHEREBY & HOW WHAT & WHO WHO & WHEN
Know how in a profession to
operationally perform
certain practices with the
help of templates and tools.

Based on personal inclinations,
understand how to act in area-
grouped disciplines and create
artifacts and their aspects.

Understand the work!ow of
separate iterating cycles and
work streams, comprised of
one or more steps.

Map activities onto a project
execution schedule, based on
horizontal team focus tracks
and vertical temporal project
periods and phases.

Major time period in the process,
to split the project into distinct
focus periods, separated by
major milestones.

Phase

+

Software application to create
an artifact from scratch or from
a template and further edit it.

Tool

+

+

Distinct responsibility and goal
of an individual person.

Role

+

+
The "ve distinct iteration cycles
Product Management, Business,
Development, Operations and
Project Management.

Work!ow

Logical iteration cycle of a
sequence of strongly related
and dependent work!ow steps.

Cycle

Single step in a work!ow cycle
with a clear logical previous and
next step in the logical work
!ow.

Step

Smallest result unit of an
artifact which can be created
separately.

Aspect

Distinct knowledge,
responsibility and objectives
within Software Engineering.

Discipline

Logical group of strongly
related disciplines.

Area

A person’s natural tendency or
urge to act or feel in a certain
way.

Inclination

The initial version of an artifact
in order to speed up and/or
support crafting the artifact.

Template

Distinct steps to perform a
certain task with the help of a
certain know-how and
template.

Practice

Distinct overall knowledge on
how to perform certain tasks.

Know-How

A person’s occupation, founded
upon specialized educational
training and formal quali"cation.

Profession
suitable for

operationalised by

derived from

correlates to

corresponds to

serialized by

operationalises

Mastering Software Engineering means to
understanding (in this order) Discipline,
Work!ow, Process and Craftsmanship
models. Especially, never start with a
particular Process model, as it is secondary!

Key Message

214 3

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.4 (2021-09-16), Authored 2021 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.2 (2021-10-11), Copyright ©

 2021 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
EF

02.1

Software Engineering MetamodelENGINEERING
big picture &

 coherency

ANALYSIS

Identify Needs:
We understand which
outcomes of the solution
are most valuable to
users.

Software Requirements REQ

Determine Solution:
We model and specify
the solution through
involved functional and
non-functional aspects.

Domain Modeling DOM

ARCHITECTURE

Design Software:
We design an
orthogonal, well-
balanced and well-
considered solution.

Software Architecture SWA

Design Systems:
We ensure that the
solution !ts optimally
into its environment.

System Architecture SYA

CONFIGURATION

Version Artifacts:
We place every artifact
of the solution under
strict version control.

Software Versioning VER

Assemble Artifacts:
We build and package
the solution through an
automated and
repeatable mechanism.

Software Assembly ASM

ANALYTICS

Review Code:
We regularly and
semantically peer-review
the source code of the
solution.

Software Reviewing REV

Test Solution:
We adequately test the
functional and non-
functional aspects of
the solution.

Software Testing TST

MANAGEMENT

Steer Process:
We rigorously balance
time, cost and scope to
react on changes and
reach the goals.

Project Management PRJ

Push Product:
We continuously push
the development and
release of the solution
to the users.

Product Management PRD

DEVELOPMENT

Implement Code:
We develop the solution
outside-in, from coarse
to !ne aspects.

Software Development DEV

Refactor Code:
We regularly and
holistically refactor the
solution to ensure long-
term quality.

Software Refactoring REF

DELIVERY

Deploy Artifacts:
We ship and deploy
the solution through an
automated and
repeatable mechanism.

Software Deployment DPL

Operate Solution:
We ensure that our infra-
structures and the solution
can be operated in a
resilient and secure way.

System Operations OPS

COMPREHENSION

Document Solution:
We adequately
document the usage
and operation of the
solution.

Usage Documentation DOC

Train Users:
We adequately train
the users and operators
of the solution.

User Training TRN

EXPERIENCE

Optimize Work!ows:
We align the solution to
the perspective of the
target audience.

User Experience UXP

Design User Interfaces:
We design a useful,
intuitive, and beautiful
user interface for the
solution.

User Interface UID

ADJUSTMENT

Support Members:
We ensure that project
members use state-of-
the-art methodology,
technology, and tools.

Project Coaching COA

Involve Stakeholders:
We ensure that all
stakeholders of the
solution are
suitably involved.

Change Management CHG

AN

EX

AR

DV

CF

DL

AC

CP

MG

AD

business-oriented & domain-speci!c constructive & technological infrastructural & technological analytical & domain-speci!c people-oriented & process-oriented

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

! ! ! ! !

"

1

1

1

1

1

2

2

2 2

23

3 3

3

34

4

4

4

4

X scalability layer (from 4/most to 1/least dispensable)

"

Requirements Engineer /
Business Analyst

Business Analyst /
Business Architect

User Experience Expert

User Interface Designer /
Graphics Designer

Software Architect

System Architect /
Enterprise Architect

Software Engineer /
Software Developer

Software Engineer /
Software Developer

Con!guration Manager

Build Manager /
Build Engineer

System Engineer

System Administrator /
System Operator

Software Tester

Software Tester

Technical Writer

Product Expert

Product Manager /
Product Owner

Project Manager

Project Coach /
Methodology Master

Change Manager

WB

BB

WB

BB

BB

WB

WB

BB

BB

BB

BB

WB

BB

BB

BB

BB

BB

BB

BBWB white-box view (details before whole) black-box view (whole before details)

BB

WB

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 3.0.9 (2022-12-10), Authored 2009-2022 by D
r. Ralf S. Engelschall and Rudolf Koster

G
raphical Illustration: Version 3.0.2 (2021-009-11), Copyright ©

 2009-2021 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
EF

02.2

Software Engineering DisciplinesENGINEERING
inclination &

 know
ledge

	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1

