TECHNISCHE
MUNCHEN

Software Engineering

in der industriellen Praxis
(SEIP)

Dr. Ralf S. Engelschall

ENGINEERING
FUNDAMENTALS
/4

Custom Software Development csb

Commercial development of
non-standardised, fully individualised,
and non-reusable company-specific
software for a single customer.

target audience: consumers & enterprises target audience: consumers & enterprises

Graphics Editing Application ~ GEA Office Productivity Application OPA

Software for editing and
rendering graphics in vector
and bitmap format.

Software for productivity
in the desktop-based
office environment.

Examples: Cinema4D, Maya, Blender, @ Examples: PowerPoint, Excel, Word, @
After Effects, lllustrator, Inkscape, STD Visio, OmniGraffle, LibreOffice,
Scribus, Photoshop, GIMP, etc. m Outlook, XMind, Firefox, Chrome, etc. m

Graphics Animation Engine GAE

Software for animating the
2D/3D virtual worlds of games
and overlays of TV productions.

Software for driving business
processes through interactive
information management.

Examples: Unity, Unreal Engine, Csb Examples: Vote, Camp$, Mission Csb
CryENGINE, Godot, HUDS, SPX-GC, Control, IPW, KEZ-PSC, TimeSheet, STD
Holographics, H2R Graphics, etc. m SAP ERP, OpenProject, etc. m
Audio/Video-Processing System AVS Data Management System DMS
Software for live-processing and Software for protocol-based
post-production of audio/video storing and retrieving of

based multimedia streams. persistent data.

Examples: vMix, OBS Studio, VLC, @ Examples: NextCloud, PostgreSQL, @
Lossless Cut, Handbrake, Adobe m CockroachDB, Redis, InfluxDB, Neo4J, m
Premiere, FFmpeg, Nimble, etc. m Tendermind, Gitea, Vault, etc. m

There are three traditional approaches to Software
Development: Custom Software Development, the
commercial development of nonstandard, fully
individualized, and non-reusable company-specific
software for a single customer; Standard Software
Development, the commercial development of a
standardized, partially customizable, but fully reusable
domain-specific software for many customers; and
Open-Source Software Development, the non-
commercial development of a standardized, highly
customizable, and fully reusable technical software for
many customers.

There are four areas and 12 classes of software. In the
first area there are three classes of software focusing on
Graphics & Media: Graphics Editing Application,
Software for editing and rendering graphics in vector
and bitmap format; Graphics Animation Engine,
software for animating the 2D/3D virtual worlds of
games and overlays of TV productions; and Audio/
Video-Processing Systems, software for live-
processing and post-production of audio/video based
multimedia streams.

In the second area there are three classes of software
focusing on Business & Data: Office Productivity
Application, software for productivity in the desktop-
based office environment; Business Information
System, software for driving business processes
through information management; and Data
Management System, software for storing and
retrieving persistent data.

Software Classes

Standard Software Development STD

Commercial development of
standardised, partially customisable,
and fully reusable domain-specific
software for many customers.

Technical Control System TCS

Software for controlling a
physical machinery or
technical system.

Examples: AquaTherm, AVM!
FritzBox Firmware, BirdDog STD
Camera Firmware, etc.

Business Information System BIS Network Communication System NCS

Software for protocol-based
communication of data over a
computer network.

TECHNISCHE
UNIVERSITAT
MUNCHEN

Open Source Software Development 0SS

Non-commercial development of
standardised, highly customisable,
and fully reusable generic software
for many customers.

Class: Development & Tools

target audience: vendors & suppliers

2

target audience: consumers & enterprises

Software Development Kit SDK

Software libraries and frameworks
of reusable functionality for
developing software.
CsD Examples: NDI SDK, HAPI,
GraphQL-I0, Sequelize, JDK,
m Spring, Hibernate, etc.

Software Development Tools SDT

Software tools for editing, linting,
compiling, packaging, distributing,
and installing software.

Examples: Apache, NGINX, HAProxy, @ Examples: Visual Studio Code, @
Mosquitto, RabbitMQ, Node-RED, Sublime Text, GCC, GNU Binutils,
KeyCloak, etc. m NPM, JDK, Docker, Helm, etc. m
Operating System Kernel OSK Operating System Tools OST
=)
. 3
Software kernel for low-level Software tools for high-level a
operating a physical or virtual operating a physical or virtual 9]
device and run programs on it. computing device.]
2o
Examples: Windows, macOS, iOS, @ Examples: Coreutils, Bash, @ %«
Linux, FreeBSD, QNX, ChibiOS/RT, Vim, TMusx, FZF, cURL, - sTD | e
Kubernetes, Wildfly, etc. m RSYNC, OpenSSH, etc. m 5;
2
S
&

In the third area there are three classes of software

focusing on Machinery & Network: Technical Control

System, software for controlling a physical machinery

or technical system; Network Communication System,

software for communicating data over a computer
network; and Operating System Kernel, software
kernel for operating a physical or virtual computing

device.

In the forth area there are three classes of software

focusing on Development & Tools: Software

Development Kit, software libraries and frameworks of
reusable functionality for developing software;

Software Development Tools, software tools for
editing, linting, compiling, packaging and installing
software; and Operating System Tools, software tools
for high-level operating a physical or virtual computing
device.

Questions

© Which two classes of software are primarily

developed using the Custom Software
Development approach?

ENGINEERING
FUNDAMENTALS

F

Development Approaches

Software Prototyping Continuum & Process

The four development approaches do not fori
a hierarchy, but can be combined in practice:
Prototyping and Bricolage can be earlier
stages of Craftsmanship or Engineering.

C ip can be part of Bricolage

skill (mocking, integrating, crafting, teaming).
—

Software Development Approaches TLITI

Engineering. Each approach requires a special

TECHNISCHE
UNIVERSITAT
MUNCHEN

Development Approaches: Characteristics Comparison *

m

W

Software Bricolage

Software Craftsmanship

Performance
Responsibility
Model
Decisions
Process
Optimisation
Risks
Stakeholders
Mastering

Software Engineering

Solutions
Standards
Efforts

Target
Sustainability
Traceability

One can distinguish four kinds of Software
Development approaches.

In Software Prototyping, one develops an early
sample or model of a software solution by mocking
and cheating in order to just once test a concept, idea
or process.

In Software Bricolage, one develops a single instance
of a software solution by tinkering, cobbling, and
integrating partial solutions in order to prove feasibility
or just provide a service.

In Software Craftsmanship, one develops a
production-grade software solution by professional,
clean but plain craftsmanship means in order to solve a
usually complicated problem.

In Software Engineering, one develops a production-
grade software solution by a professional, risk-hedged
engineering approach in order to solve a usually
complex problem.

Software Prototypmg

St
oftware CrafSmanship
oftwiaré Engineering

* Allfigures are just rough
orders of magnitude
for indication and
illustration purposes.

Key Message

All four approaches
are equally essential
in practice. Which
one(s) to choose,
entirely depends

on the particular
requirements.

Development Approaches: Success Patterns

D ul

Software
Engineering

Software
Craftsmanship

Software
Bricolage

Software
Prototyping

"

B 11y

‘Doniasay st

032

yovouddp 29 [pob

The four development approaches can be combined in
practice: Prototyping and Bricolage can be earlier
stages of Craftsmanship or Engineering. Craftsmanship
can be part of Engineering. Each approach requires a
special skill. All four approaches are equally essential in
practice. Which one(s) to choose entirely depends on
the particular requirements.

Questions

© Which Software Development Approach should
be choosen to realize a complex Business
Information System?

e

Which Software Development Approach should
be choosen to realize a complicated reusable
library?

TECHNISCHE
UNIVERSITAT
MUNCHEN

J= s Software Engineering

Software Engineering

S0Y 43 |

Machinery

Hardware

The collection of physical
components (machinery)
of a computer system.

The collection of instructions
and data that tell a computer
———J system how to work.

specialised by

created by

Engineering

transferred to

operated by

l created by

Software Engineering (transferred)

The systematic application of scientific and
__ technological knowledge, principles,

taking into account

Engineering Code of Conduct

Engineering: derived from the
Latin words ingeniare (to create,
generate, contrive, devise) and
ingenium (cleverness).

approaches, practices, methods, and
experiences, to design, build, operate, and
maintain complex production-grade software
solutions through a traceable process.

l simplified to

Software Engineering (simplified)

also taking
into account

The systematic application of engineering
knowledge, principles, approaches,

A

33

* derived from definitions and Code of Ethics
statements of ASCE, NSPE, ACM, IEEE, etc.

Engineering is the systematic application of scientific
and technological knowledge, principles, approaches,
practices, methods, and experiences, to design, build,
operate and maintain complex production-grade
solutions through a traceable process.

Software Engineering is the systematic application of
engineering knowledge, principles, approaches,
practices, methods, and experiences to the
development of software.

practices, methods, and experiences to
the development of software.

For both Engineering and Software Engineering, the
following Code of Conduct holds: Commit yourself to
the highest ethical and professional conduct; accept
responsibility in making decisions consistent with the
safety, health, and welfare of the public, apply the state
of the art in science and technology of your field;
perform services only in areas of your competence; and
comply with the principles of sustainable development

Questions
@© Is Software Engineering also suitable for the

development of a non-complex software in a small
team of two people?

soy1a 2 uoissafoud

£ s Profession Characteristics TUT -

involving the use of involving the use of
strong imagination analytical thinking
and original ideas and logical reasoning

CRAFTSMAN ENGINEER

Handwerker Ingenieur

) . Objectives: Software Engineering: Objectives: Software Engineering:
involving the solve problems . Programming solve problems Estimation
actual doing and create uniques I I Configuration create solutions Automation
real application H H -
of somethin (
9 - [

Erfinder

practical

ARTIST SCIENTIST

Kunstler Wissenschaftler

involving the Objectives: Software Engineering: Objectives: Software Engineering:
ifested create beauty Visual Design analyse problems Methodology
R maf“ e% create uniques Coding Style create knowledge User Research
imagination or .
analytical study
of something

‘©
=2
=
v
P
o
7}
<
=]

AIIN-JHIX RSN

Professions usually have two of four characteristics: One can distinguish five interesting professions: A
Being creative means involving the use of strong craftsman acts in a creative and practical way, and
imagination and original ideas. Being rational means solves problems and creates uniques. An engineer acts
involving the use of analytical thinking and logical in a rational and practical way, and solves problems
reasoning. Being practical means involving the actual and create solutions. An artist acts in a creative and
doing and real application of something. Being theoretical way, and creates beauty and uniques. A
theoretical means involving the manifested scientist acts in a rational and theoretical way, and
imagination or analytical study of something. analyses problems and creates knowledge. On the
other hand, an inventor usually has to combine all
characteristics.
Questions
@® When you're dealing with configuration and
programming in Software Engineering, instead of
an engineer you act more like a...?

£ woien Discipline Claim TUTI

FARSIGHTED TENET-ORIENTED THOUGHTFUL

weitblickend grundsatzorientiert wohluberlegt

HOLISTICALLY ADEQUATE FEASIBLE

ganzheitlich angemessen machbar

INCREMENTAL VALUEABLE SUSTAINABLE

inkrementell wertvoll nachhaltig

Across the various Software Engineering Disciplines, Questions

there are some common properties they all claim from

a conceptual point of view: farsighted, tenet-oriented, © What s the most difficult claim in a Discipline in
thoughtful, holistically, adequate, feasible, today’s practice?

incremental, valueable, and sustainable.

£= ~owoms - Software Engineering Metamodel TUTI -

Craftsmanship Model 4 Discipline Model 1 Workflow Model 2 Process Model 3

WHEREBY & HOW

Know how in a profession to
operationally perform
certain practices with the
help of templates and tools.

A person's occupation, founded
e 5
training and formal qualification.

dh

Distinct overall knowledge on
how to perform certain tasks.

HOW & WHAT

Based on personal inclinations,
understand how to act in area-
grouped disciplines and create
artifacts and their aspects.

A person’s natural tendency or
urge to act or feel in a certain

T suitable for

way.

Logical group of strongly 9F
related disciplines.

}.

Practice Discipline

operationalised by [ENEUNEE QI [l +
responsibility and objectives

within Software Engineering.

Distinct steps to perform a +
certain task with the help of a
certain know-how and

template.
¥.

+
Single representation of an
internally used and/or
externally delivered result.

.

The initial version of an artifact + derived from
in order to speed up and/or

support crafting the artifact.

d_
Software application to create

an artifact from scratch or from
atemplate and further edit it.

Smallest result unit of an
artifact which can be created
separately.

Software Engineering can be understood through a
meta-model based on four distinct but interlinked
models.

The Craftsmanship Model is the base and targets the
WHEREBY & HOW. It spans from the Professions of
individual persons, their corresponding Know-Hows
and Practices to the underlying Templates and Tools.

The Discipline Model targets the HOW & WHAT. It
segregates Software Engineering into Disciplines,
which are grouped into Areas and which are motivated
by the usual Inclinations of individual persons. Each
Discipline is then described through input and output
Artifacts and their Aspects.

corresponds to

WHAT & WHO

Understand the workflow of
separate iterating cycles and
work streams, comprised of

one or more steps.

The five distinct iteration cycles
Product Management, Business,
Development, Operations and
Project Management.

ﬁ

Logical iteration cycle of a

WHO & WHEN

Map activities onto a project
execution schedule, based on
horizontal team focus tracks
and vertical temporal project
periods and phases.

Distinct responsibility and goal
of an individual person.

ﬁ

Work stream consisting of a

correlates to serialized by 1

sequence of strongly related sequence of steps.
and dependent workflow steps. of a workflow cycle.
V. 2

Step Activity

Single step in a workflow cycle operationalises 1
with a clear logical previous and

next step in the logical work

flow.

Distinct activity in the process
to perform a certain task or
complete a particular work-
package.

+
Period

Minor time period in the
process, to split the project
phases into distinct time-, cost-,
or scope-based time units.

ﬁ
Major time period in the process,
to split the project into distinct

focus periods, separated by
major milestones.

Logical sequence of
interweaved, inter-cycle,
optionally skipped, and
dependent steps.

Key Message

Mastering Software Engineering means to
understanding (in this order) Discipline,
Workflow, Process and Craftsmanship
models. Especially, never start with a
particular Process model, as it is secondary!

The Workflow Model targets the WHAT & WHO. It
describes a Workflow of Cycles which contain Steps. A
Flow are the runs through those Steps over time.

The Process Model finally targets the WHO & WHEN. It
maps Activities onto a project execution schedule,
based on horizontal Tracks of Roles and vertical
Periods of Phases.

Questions

@© How many Cycles are known in the Workflow
Model of Software Engineering, in which persons
with similar Inclinations act?

o
)

Adua.ayoo 29 aunyad biq

ENGINEERING TECHNISCHE
FUNDAMENTALS m UNIVERSITAT
[4 MUNCHEN

Software Engineering Disciplines

AN [l ARCHITECTURE w AR [CONFIGURATION CF MANAGEMENT MG [i]
Software Requirements REQ Software Architecture W SWA Software Versioning VER Software Reviewing REV Product Management PRD §
Identify Needs: 3] Design Software: n Version Artifacts: n Review Code: Push Product:
We understand which We design an w8 We place every artifact We regularly and w We continuously push
outcomes of the solution orthogonal, well- of the solution under semantically peer-review the development and

are most valuable to

users. considered solution. solution. to the users.

Requirements Engineer /' Product Manager/

Business Analyst Software Architect Configuration Manager Software Tester Product Owner

Domain Modeling DOM System Architecture SYA Software Assembly ASM Software Testing TST Project Management PRJ
Determine Solution: Design Systems: Assemble Artifacts: n Test Solution: Steer Process: a
We model and specify We ensure that the We build and package We adequately test the We rigorously balance

the solution through solution fits optimally the solution through an functional and non- time, cost and scope to

involved functional and
non-functional aspects.

Business Analyst/
Business Architect

balanced and well-

into its environment.

System Architect/
Enterprise Architect

strict version control.

automated and
repeatable mechanism.
Build Manager /'

Build Engineer

the source code of the

functional aspects of
the solution.

Software Tester

release of the solution

react on changes and
reach the goals.

Project Manager

4% infrastructural & technological analytical & domain-specific people-oriented & process-oriented

ADJUSTMENT AD

business-oriented & domain-specific {7 constructive & technological

m DEVELOPMENT pv ll DELIVERY DL
PL

User Experience UXP Usage Documentation DOC Project Coaching COA

Optimize Workflows: Implement Code: Deploy Artifacts: n Document Solution: a Support Members:

We align the solution to We develop the solution w We ship and deploy We adequately e We ensure that project

the perspective of the outside-in, from coarse the solution through an document the usage members use state-of-

target audience. to fine aspects. automated and and operation of the the-art methodology,

repeatable mechanism. solution. technology, and tools.
Software Engineer/ Project Coach/

User Experience Expert Software Developer System Engineer Technical Writer Methodology Master —
3
Q

User Interface uiD System Operations OPS User Training TRN Change Management CHG §
5]

Design User Interfaces: Refactor Code: Operate Solution: Train Users: Involve Stakeholders: a g'

We design a useful, o We regularly and @ We ensure that our infra- We adequately train We ensure that all %

intuitive, and beautiful holistically refactor the structures and the solution the users and operators stakeholders of the -~

user interface for the solution to ensure long- can be operated in a of the solution. solution are 2

solution. term quality. resilient and secure way. suitably involved. g

User Interface Designer / Software Engineer / System Administrator / &

Graphics Designer Software Developer System Operator Product Expert Change Manager Q

WB white-box view (details before whole) B black-box view (whole before details)

Software Engineering can be understood through 20
distinct Disciplines (operationalized through input and
output artifacts and their aspects), which are logically
grouped into 10 distinct Areas, and which in turn are
logically grouped into 5 distinct Inclinations of
individual persons.

Persons with a strong domain-specific and business-
oriented Inclination act in the Areas Analysis and
Experience and the corresponding Disciplines
Software Requirements, Domain Modeling, User
Experience and User Interface.

Persons with a strong constructive and technological
Inclination act in the Areas Architecture and
Development and the corresponding Disciplines
Software Architecture, System Architecture,
Software Development and Software Refactoring.

scalability layer (from 4/most to 1/least dispensable)

Persons with a strong infrastructural and
technological Inclination act in the Areas
Configuration and Delivery and the corresponding
Disciplines Software Versioning, Software Assembly,
Software Deployment and Software Operations.

Persons with a strong analytical and domain-specific
Inclination act in the Areas Analytics and
Comprehension and the corresponding Disciplines
Software Reviewing, Software Testing, Usage
Documentation and User Training.

Persons with a strong people-oriented and process-
oriented Inclination act in the Areas Management and
Adjustment and the corresponding Disciplines Project
Management, Project Auditing, Project Coaching
and Change Management.

Questions

© Which Disciplines of Software Engineering are
considered the King Disciplines?

	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions

