
Software Engineering in der industriellen Praxis (SEIP)

Thank you for �ying Industry Airlines.
Lecture End

To be continued.
Lecture Gap

Let’s have a meal!
LUNCH

Let’s breathe deeply!
BREAK

Fasten your seatbelts, please.
Lecture Start

Dr. Ralf S. Engelschall

IDEATE

UN
DE

RS
TA

ND
SPECIFY

EXPLO
RE

DESIGN

IM
PL

EM
ENT

BUILD

VERIFY

DEPLOY

OPERATE

INTEGRATE

M
O

NITOR

ADAPT

BIZ

DEV OPS

BUSINESS

DEVELOPMENT OPERATIONS

ITERATIVE APPROACH:
The three main and two
auxiliary work�ow cycles
express a fully iterative
engineering approach.

INTERLINKED CYCLES:
The three main cycles are
inter-linked and can cycle

through their steps at
di�erent speeds S(x):

S(BIZ) ≥ S(DEV) ≥ S(OPS)

EMPHASIS AND SEQUENCING:
The work�ow step colors

represent the usual work�ow
emphasis. Work�ow steps are

executed in sequence but
may be skipped if dispensable.

DISCIPLINE RESPONSIBILITY:
Each work�ow step has
one or more disciplines

which are responsible for
continuously performing

the step in practice.

INITIATE

ST
EE

R

PLAN

DEFIN
E

PRJ
PROJECT

MANAGEMENT

DOMAIN
FOCUS

TECHNOLOGY
FOCUS

PRD

RO
LL

O
UT

RELEASE

CONFIGURE

PRODUCT
MANAGEMENT

PRODUCT
FOCUS

ENVISION

Business &
Deliverables

Communication &
Orchestration

Problem &
Solution

Software &
Systems

WHAT ?

WHY ? WHEN ?

HOW ? WHERE ?

A

A

A

A

A

A Automatable

ENTRY
ENTRY

ENTRY

EN
TR

Y

ENTRY

PROJECT
FOCUS

PEOPLE INCLINATIONS:
The �ve work�ow cycles
intentionally loosely align
with the usual inclinations,
which express the di�erent
types of involved people.

FULL-CYCLE SCOPE:
The scope of the full
main-cycle work�ow
usually is based on
business-value-adding
user scenarios.

(m
eta)

Licensed to Augsburg U
niversity for reproduction in Com

puter Science lecture contexts only..
Licensed to Technische U

niversität M
ünchen (TU

M
) for reproduction in Com

puter Science lecture contexts only.
Licensed to m

sg system
s ag for reproduction in m

sg Research training contexts only.
Licensed to m

sg system
s ag for reproduction in m

sg Applied Technology Research training contexts only.

Software
Engineering
Academy

Ra
lf S

. Engelschall Signature Series Orig
in

al

Intellectual Content: Version 1.1.1 (2021-11-29), Authored 2019-2021 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.1.0 (2021-09-12), Copyright ©

 2020-2021 D
r. Ralf S. Engelschall <

http://engelschall.com
>

, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
02.3

EF

Software Engineering Work�owENGINEERING
focus &

 steps
1

1 2

3

4

5

6 7

PRODUCT
MANAGEMENT

Con!gure Version:
We con!gure versions of
the solution from
versioned artifacts and
their feature-sets.

CONFIGURE

Envision Solution:
We envision the solution
functionality and quality
from the business and
user perspectives.

ENVISION

PRD

Rollout Version:
We adequately inform,
involve and train
the users and operators
of the solution.

ROLLOUT

Release Version:
We create and release a
distinct version of the
solution.

RELEASE

BUSINESS
EFFORTS

Ideate Solution:
We !nd an adequate
solution for the problem
and the requirements of
the users.

IDEATE

Understand Problem:
We empathically
understand the problem
and requirements of the
users.

UNDERSTAND

BIZ

Specify Solution:
We rigorously and
completely specify the
functionality and quality
of the solution.

SPECIFY

Explore Ideas:
We prototype, explore,
and assess ideas,
approaches and
technologies for the
solution.

EXPLORE

DEVELOPMENT
EFFORTS

Implement Solution:
We implement the
solution outside-in, from
coarse to !ne aspects.

IMPLEMENT

Design Architecture:
We design how to
implement the solution
in an orthogonal,
adequate and
sustainable way.

DESIGN

DEV

Verify Solution:
We rigorously, but
adequately, review and
test the functional and
non-functional aspects
of the solution.

VERIFY

Build Artifacts:
We build and package
the solution from
versioned artifacts.

BUILD

OPERATIONS
EFFORTS

Integrate Environment:
We integrate the
solution with its target
environment.

INTEGRATE

Deploy Artifacts:
We ship and deploy the
solution releases and
their updates in an
automated and
repeatable way.

DEPLOY

OPS

Monitor Solution:
We continuously
monitor our
infrastructures and
the solution under
run-time.

MONITOR

Operate Solution:
We ensure that our
infrastructures and the
solution can be operated
in a resilient and secure
manner.

OPERATE

PROJECT
MANAGEMENT

De!ne Constraints:
We de!ne the
constraints of the
project on the time, cost,
and scope level.

DEFINE

Initiate Project:
We initially setup the
project on the contract
and resource level.

INITIATE

PRJ

Steer People:
We rigorously and
continuously balance
time, cost and scope to
react on changes and
still ful!lling the
constraints.

STEER

Plan Tasks:
We continuously plan
the next iterations, their
steps and their tasks in
the project.

PLAN

UXP

DOM

REQ

UID

REQ

SWA

UXP

UID

UXP

DEV

PRD

UXP

PRD

PRD

VER

PRD

ASM

CHG

TRN

SYA

SWA

DOC

DEV

REF

REV

VER

ASM

TST

REV

OPS

DPL

OPS

DPL

SYA

OPS

OPS

TST

PRJ

PRJ

PRD

PRJ

PRJ

COA

!"

#

$

%

&'

(

)

* +

,

-

.

/

0

1

2

3

4

DOC

SYA

PRD

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.1 (2021-09-13), Authored 2021 by D
r. Ralf S. Engelschall and Rudolf Koster

G
raphical Illustration: Version 1.0.1 (2021-09-13), Copyright ©

 2021 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
EF

02.4

Software Engineering StepsENGINEERING
steps &

 goals

RE
Q

D
O

M

U
XP U
ID

SW
A

SY
A

D
EV RE
F

VE
R

AS
M

D
PL

O
PS RE
V

TS
T

D
O

C

TR
N

PR
D

PR
J

CO
A

CG
H

Re
qu

ire
m

en
ts

 E
ng

in
ee

r

Bu
si

ne
ss

 A
rc

hi
te

ct

U
se

r E
xp

er
ie

nc
e

Ex
pe

rt

U
se

r I
nt

er
fa

ce
 D

es
ig

ne
r

So
ft

w
ar

e
Ar

ch
ite

ct

Sy
st

em
 A

rc
hi

te
ct

So
ft

w
ar

e
D

ev
el

op
er

So
ft

w
ar

e
D

ev
el

op
er

Co
nf

ig
ur

at
io

n
M

an
ag

er

Bu
ild

 M
an

ag
er

Sy
st

em
 E

ng
in

ee
r

Sy
st

em
 A

dm
in

is
tr

at
or

So
ft

w
ar

e
Te

st
er

So
ft

w
ar

e
Te

st
er

Te
ch

ni
ca

l W
rit

er

Pr
od

uc
t T

ra
in

er

Pr
od

uc
t O

w
ne

r

Pr
oj

ec
t M

an
ag

er

Pr
oj

ec
t C

oa
ch

Ch
an

ge
 M

an
ag

er

ENVISION + + * *
CONFIGURE + + + * *
RELEASE + * * + * + +
ROLLOUT * + + *
UNDERSTAND * + * +
IDEATE * + * +
EXPLORE + + * * * * +
SPECIFY + * + * + + + + +
DESIGN + + + + * * + + + + + +
IMPLEMENT + + * * + + * *
BUILD + + + * * + +
VERIFY + + + + + + + * * +
DEPLOY + * + + + * * +
INTEGRATE + * + + * * +
OPERATE + *
MONITOR + + + + + + * * +
ADAPT + + + + + * * * +
INITIATE * *
DEFINE + + + * * * responsible (primarily)
PLAN + + + * * * responsible (secondarily)
STEER + + + * + supporting

people-oriented &
process-oriented

MG ADCFDV

constructive &
technological

DL

infrastructural &
technological

AC CP

analytical &
domain-specific

ARAN

business-oriented &
domain-specific

PR
J

O
PS

EX

BI
Z

D
EV

PR
D

2. WORKFLOW STEPS:
The work�ow steps describe a
logical activity which has to be
performed. Each step relates
to one or more discipline areas
and their corresponding disciplines,
which express the operative
responsibilities for each work�ow
step. In each discipline individual
roles act.

3. WORKFLOW ROLES:
The work�ow roles are held by
individual persons. Each role is
primarily responsible for a
particular work�ow step. In
addition, each role can be
secondarily responsible for
other work�ow steps or at least
actively support those steps.

1. WORKFLOW CYCLES
The work�ow has �ve cycles
which continuously iterate
through their steps. Work�ow
steps are executed in each cycle
in sequence, but may be skipped
if dispensable in a particular
iteration of the process. The length
of an iteration is arbitrary, but can
be e.g. about 1/3 of a Scrum sprint.

4. PROJECT SCHEDULE:
To create a particular project
execution schedule, the �ve cycles,
their iterations and their steps have
to be mapped onto a timeline. The
cycles are mapped onto (horizontal)
timeline tracks, the iterations are
mapped onto (vertical) timeline
phases, and the steps are mapped
onto timeline activities.

5. PROCESS FLOWS (THE CRUX):
The activities across the cycles
can (and should) be linked into
individual (diagonal) waterfall-like
�ows, although the execution
schedule, from the perspective of
the cycles, is fully iterative. There are
multiple such �ows in parallel and
they are usually highly interleaved
on the project timeline in order
to maximally utilize the team.

6. PROCESS ADAPTION:
In the meta-step ADAPT, the
process is adapted by choosing
which work�ow steps are required
for the next iteration. The major
input for this decision is the current
solution state and the feedback
on it by the customer.

U I E S

D I B I B V

D I O M D O M

I SPD

C CE E

iteration 1 iteration 2 iteration 3 iteration 4

PD S S

PRD

BIZ

DEV

OPS

PRJ

S

I B V I B V

D O M D O M

S

R R R RC

iteration 5 iteration 6 iteration 7

P S SP

U I EU SU

R RE

U

D D I B V

I D O M

Licensed to Augsburg U
niversity for reproduction in Com

puter Science lecture contexts only..
Licensed to Technische U

niversität M
ünchen (TU

M
) for reproduction in Com

puter Science lecture contexts only.
Licensed to m

sg system
s ag for reproduction in m

sg Research training contexts only.
Licensed to Softw

are Engineering Academ
y for reproduction in training contexts only.

Software
Engineering
Academy

Ra
lf S

. Engelschall Signature Series Orig
in

al

Intellectual Content: Version 1.0.8 (2021-09-02), Authored 2019-2021 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.1.1 (2021-09-11), Copyright ©

 2020-2021 D
r. Ralf S. Engelschall <

http://engelschall.com
>

, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
02.5

EF

Software Engineering ProcessENGINEERING
roles &

 tasks
1

1 2

3

Software Requirements Speci!cation REQ

Software Architecture Speci!cation ARC

Software Implementation Results IMP

Software Documentation Results DOC

Customer Journey
Requirements: PRDUXPREQ

Personas
Domain Model: UXPDOMREQ

Solution Vision
Requirements: PRDUXPREQ

Test Cases
Domain Model: TSTDOMREQ

Functional Requirements
Requirements: REQUXPPRD

Usage Concept
User Interface: UIDUXP

Non-Functional Requirem.
Requirements: REQSWAPRD

Language Conventions
User Interface: UIDUXPREQ

Data Model
Domain Model: DOMREQ

Dialog Patterns
User Interface: UIDUXP

Use Cases
Domain Model: DOMREQUXP

Dialog Storyboard
User Interface: UIDUXPREQ

Use Case Scenarios
Domain Model: DOMREQUXP

Visual Design
User Interface: UIDUXP

2 ENVISION

2 ENVISION

1 UNDERSTAND

1 UNDERSTAND

input / what output / what

input / how output / how

1 SPECIFY

1 SPECIFY

2 SPECIFY

3 UNDERSTAND

3 SPECIFY

2 SPECIFY

3 SPECIFY

3 SPECIFY

1 SPECIFY

3 SPECIFY

PRD

Context View
Viewpoint: PRDSWASYA

2 ENVISION

Functionality View
Viewpoint: SWASYADOM

1 DESIGN

Information View
Viewpoint: SWADOM

1 DESIGN

Concurrency View
Viewpoint: SWASYADEV

2 DESIGN

Development View
Viewpoint: DEVSWAVERASM

3 IMPLEMENT

Deployment View
Viewpoint: DPLOPSSWASYA

1 DEPLOY

Operations View
Viewpoint: OPSDPLSWASYA

2 OPERATE

Con!gurability & Extensibili.
Perspective: DPLSWADEV

3 INTEGRATE

Performance & Scalability
Perspective: SWASYADPLOPS

1 DESIGN

Availability & Recoverability
Perspective: OPSDPLSWASYA

2 OPERATE

Reliability & Resilience
Perspective: SWASYADEV

2 DESIGN

Interoperability & Compatib.
Perspective: SWADEV

3 DESIGN

Compliance & Tracability
Perspective: DEVSWATSTPRD

3 IMPLEMENT

Security & Safety
Perspective: SWADEV

1 DESIGN

Application
Source Code: DEVREF

Application
Binary Code: ASM

Build Automation
Source Code: ASMVERDEV

Deployment Automation
Source Code: DPLVERDEV

Test Automation
Source Code: TSTDEV

Operation Automation
Source Code: OPSDEV

1 IMPLEMENT

2 BUILD

3 VERIFY

1 BUILD

3 DEPLOY

3 OPERATE

Usage Tutorial
User Guide: DOCTRNUXP

2 SPECIFY

Functionality Reference
User Guide: DOCTRNDOM

1 SPECIFY

Operation Procedures
Operation Guide: OPSDPLDOCTRN

2 OPERATE

Deployment Procedure
Operation Guide: DPLOPSDOC

1 DEPLOY

TRN

In a Software Engineering project,
additional internal Artifacts are
created by the Disciplines in order to
perform their work e!ciently and
e"ectively. The Artifacts shown here
are the external ones which glue
together the Disciplines and which
are part of the delivery set.

Notice: Internal vs. External

The Software Requirements
Speci!cation and the Software
Documentation Results primarily
have a domain-speci!c focus. The
Software Architecture Speci!cation
and the Software Implementation
Results primary have a
technological focus.

Notice: Domain vs. Technology

The four Artifact Sets shown here just
cluster the individual Artifacts and
their contained Aspects. The Artifacts
can be represented in an arbitrary
graphical and/or textual form and be
provided in an arbitrary format. The
Aspects just structure an individual
Artifact internally.

Notice: Artifacts vs. Aspects

Each Artifact is tagged with the
primarily and secondarily responsible
Disciplines, the primary Step of the
Work"ow where the Artifact is
developed, and the Scalability Layer
(1 to 3, indicating more to lesser
importance).

Notice: Artifact Tagging

Release Information
User Guide: VERPRD

3 RELEASE

Con!guration Reference
Operation Guide: DEVDPLDOCTRN

1 IMPLEMENT

2

1

4

3

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.0 (2021-10-10), Authored 2021 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.0 (2021-10-10), Copyright ©

 2021 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
EF

02.6

Software Engineering ArtifactsENGINEERING
artifacts &

 deliverables

REQ

DOM

Requirements

Domain Modeling

User Experience

User Interface Design

A
N

EX

Software Architecture

System Architecture

Software Development

Software Refactoring

A
R

D
V

UXP

UID

SWA

SYA

DEV

REF

Software Versioning

Software Assembly

Software Deployment

System Operations

CF
D

L

VER

ASM

DPL

OPS

REV

TST

Software Review

Software Testing

Usage Documentation

User Training

AC
CP

DOC

TRN

PRD

PRJ

Product Management

Project Management

Project Coaching

Change Management

M
G

A
D COA

CHG

DEVELOPMENT MAINTENANCE
Inception Elaboration Construction Transition Production Retirement Termination
Initial project setup
by de!ning the goal
and establishing all
necessary resources.

Product termination
by archiving all
sources and data and
destroying all
infrastructures.

Scope is roughly
speci!ed,
architecture is
de!ned and walking
skeleton is crafted.

Product step by step
and in full detail
is speci!ed,
implemented, tested
and deployed.

Final product version
is o"cially rolled out
through !nal
deployment and
user training.

Product is regularly
bug-!xed and
dependency upgraded,
and updated in
production.

Product is bug-!xed
only and updated in
production on
demand only.

Temporal
Phase

Human Resource
Sta"ng Curve

E#ort
Focus

40% Top-Down
Non-Scope-Dependent E#ort

60% Bottom-Up
Scope-Dependent E#ort

Software products follow a life-cycle of seven temporal, non-
equally sized phases. Software Engineering disciplines
individually focus their e!orts on those phases and their
e#orts either bottom-up depend on the domain-speci!c
scope or top-down do not depend on it. The amount of
required human resources di#ers between those phases, too.
E#ort estimations have to take disciplines, their phase focus,
their domain-speci!c scope dependency, and the human
resource sta"ng curve into account.

E#ort Focus
Primary Peek

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.4 (2022-08-11), Authored 2021-2022 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.1 (2021-09-11), Copyright ©

 2021 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
EF

03.1

Software Engineering E!ortsENGINEERING
phases &

 efforts

x 4,00

x 2,00

x 1,50

x 1,00

x 1,25

/ 1,25

/ 4,00

/ 2,00

/ 1,50

5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Inception Elaboration Construction

0%

x 1,40

x 1,00

Cone of Uncertainty Essential Elaboration Phase

The Cone of Uncertainty (Steve McConnell, 2006) tells how the variability of
the project scope (measured in E!ort, Cost or Features) in Software
Development changes over time. Initially, it usually is within the range of
+/- 400% of the "nal scope.

The early development phases Inception and Elaboration especially have
to ensure that within the "rst 20% of the project, the variability is reduced
noticeably to just +/- 50%. During the initial iterations of the Construction
phase within the "rst 30% of the project, the variability usually can be
further reduced to about +/- 25%.

For iterative/agile approaches, experience showed that during the
Construction phase inherently the "nal scope further shifts by about
+ 40% due to the just step-by-step learned required details of the required
solution. This especially has to be taken into account for estimations.

Inherent scope shift caused by modi"cations
of the scope even during Construction phase
due to iterative/agile approach

Variability
of Project Scope
(E!ort, Cost, Features)

Project
Development

Time

Inception Elaboration Construction Transition

Contract Conditions 1 Contract Conditions 2
Deferred Estimated Figures
for Contract Conditions 2

Agile Fixed-Price Contracts:

The Agile Fixed-Price is an agile variant of a "xed-price contract,
not a "xed-price project with an agile development process.

There are two important inherent aspects:
 First, the contract contains two types of conditions: one (usually
Time & Material but "xed duration based) for the Inception and
Elaboration phases in order to make experiences and to gather
necessary "gures, and one (usually Fixed-User-Story and/or Fixed-
Price based) for the Construction and Transition phases based on
deferred estimated "gures, gathered in the Elaboration phase.
 Second, the Fixed-Price aspect of the contract is actually based
on an amount of User-Stories (resulting in costs by multiplying them
with either an average hourly rate of an engineer or individual rates
based on engineer job levels), which the customer can 1:1 exchange
during the project for di!erent deliverables.

The crux of an Agile Fixed-Price contract is: "rst, during the
Inception and Elaboration phases the supplier can shrink the Cone
of Uncertainty and this way its risks dramatically, and second, during
the Construction and Transition phases the customer still remains
#exible in scope.

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.2 (2022-10-10), Authored 2021-2020 by D
r. Ralf S. Engelschall based on concepts from

 Steve M
cD

onnell
G

raphical Illustration: Version 1.0.1 (2022-10-10), Copyright ©
 2021-2020 D

r. Ralf S. Engelschall <http://engelschall.com
>, All Rights Reserved.

U
nauthorized Reproduction Prohibited.

EF
03.2

Uncertainty & ElaborationENGINEERING
uncertainty &

 elaboration

Walking Skeleton:

The Walking Skeleton (or Technical Breakthrough) is the design and
implementation of the bare technical foundation of an application,
still without any domain-speci"c functionalities. It is made during
the Elaboration phase with the primary purpose to establish a
stable integration of all technical aspects (libraries, frameworks,
build procedures, etc) onto which the domain-speci"c
functionalities later can be successively put onto.

Estimation & Variability Conversion & Normalization

b: best-case (optimistic)
m: most-likely (realistic)
w: worst-case (pessimistic)

Three-Point Estimation and Estimation Variability Classes:

e = (b + 4 x m + w) / 6 expected e!ort (weighted average)
s = (w - b) / 6 standard deviation (e!ort variation)

Insane Variability: +/- 10%
Very Good Variability: +/- 15%
Good Variability: +/- 20%
Acceptable Variability: +/- 25%

Non-Linear
Effort Reduction 0% 10

%

25
%

45
%

80
%

N
ov

ic
e

Pr
ac

tit
io

ne
r

M
as

te
r

Ex
pe

rt

G
ur

u

Novice 1,00 0,90 0,75 0,55 0,20
Practitioner 1,11 1,00 0,83 0,61 0,22
Master 1,33 1,20 1,00 0,73 0,27
Expert 1,82 1,64 1,36 1,00 0,36
Guru 5,00 4,50 3,75 2,75 1,00

Es
tim

at
or

Performer

Estimation Sizes and Estimation Variability:

2. Convert from Estimator to Performer:
 (see also CAP model, http://cap-model.com)

3. Adjust for Reality:
Estimator Optimism: +30%
Performer Meetings: +20%

1. Ask Estimater:
 “How many Person-Days do you need
 when you can focus on this task?”

T-Shirt-Size (Logically) XXS XS S M L XL XXL XXXL
Fibonacci-Size (PD or SP) 0,50 1 2 3 5 8 13 21
Size Variability (-) 0,25 0,25 0,50 0,50 1,00 1,50 2,50 4,00
Size Variability (+) 0,25 0,50 0,50 1,00 1,50 2,50 4,00 8,00

Notice: Estimations can be done in Person-Days (PD) or
Story-Points (SP). In both cases, keep in mind to use
something like the Fibonacci numbers which increase in a
non-linear fashion and express the increasing variability
with the increasing total amount of estimated e!ort.

Sizes & Variability Risk Mitigation & Upscaling

4. Adjust for Uncertainty:

Domain

In
ce

pt
io

n

El
ab

or
at

io
n

Co
ns

tr
uc

tio
n

Technology

In
ce

pt
io

n

El
ab

or
at

io
n

Co
ns

tr
uc

tio
n

unknown 30% 40% 20% unknown 20% 60% 10%
partially known 15% 20% 10% partially known 10% 30% 5%

fully known 0% 0% 0% fully known 0% 0% 0%

Process
In

ce
pt

io
n

El
ab

or
at

io
n

Co
ns

tr
uc

tio
n

People

In
ce

pt
io

n

El
ab

or
at

io
n

Co
ns

tr
uc

tio
n

unknown 60% 40% 10% unknown 60% 40% 0%
partially known 30% 20% 5% partially known 30% 20% 0%

fully known 0% 0% 0% fully known 0% 0% 0%

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.1 (2021-11-29), Authored 2021 by D
r. Ralf S. Engelschall based on concepts from

 Steve M
cD

onnell
G

raphical Illustration: Version 1.0.0 (2021-09-11), Copyright ©
 2021 D

r. Ralf S. Engelschall <http://engelschall.com
>, All Rights Reserved.

U
nauthorized Reproduction Prohibited.

EF
03.2

E!ort EstimationsENGINEERING
uncertainty &

 efforts

A binding document that speci!es the requirements for a
solution, by focusing on the WHAT and WHY of the solution —
and not giving instructions for the HOW.

The documented set of requirements has to be:
correct, unambiguous, complete, consistent, ranked,
veri!able, modi!able, and traceable.

Requirements Speci!cation Requirement Characteristics

Speci!c
The requirement is precise,
unambiguous, and clear
on what should
be done.

S

Measurable
The requirement can be
veri!ed when it has been
achieved by use of a
particular test.

M

Achievable
The requirement is
achievable given existing
circumstances and
feasible and viable
solutions.

A

Relevant
The requirement is relevant
to the goals of the
context.

R

Time-Bound
The requirement can be
achieved within a
reasonable time
frame.

T

[<req-id>] <req-name>:
<subject/actor>
SHALL
<result/action/condition>
BECAUSE
<rationale>

Requirement Expression

Requirement Life-Time

Enduring
The requirement lasts forever,
as it is derived from core
activities and
organisational
structures.

E

Volatile
The requirement can be
temporary, as it might
change over time.

V

Requirement Interdependencies

Positive (Backing)

One requirement supports the other
(e.g. for NFRs: Maintainability and
Comprehensibility usually support
Adaptability, Portability, Modi!ability,
etc., and Scalability usually
supports Availability, etc.)

POS Negative (Trade-O")

One requirement interferes with the
other (e.g. for NFRs: Security usually
interferes with E#ciency, Usability,
Performance, etc., and Orthogonality
can interfere with Usability)

NEG

Requirement Classes

Functional (Shall Do)

A condition or capability that a
solution must have to provide its
service in terms of its behaviour and
information. Think:
Functionality.

FR Non-Functional (Shall Be)

A condition, property or quality
that a solution must have to
satisfy a contract, standard,
or other formally imposed
obligation. Think:
Constraints and “*-ilities”.

NFR

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.2 (2022-10-28), Authored 2018-2022 by D
r. Ralf S. Engelschall, based on ideas from

 BABO
K 2.0:2009, IEEE Std 610:1990 and IEEE Std 830–1998

G
raphical Illustration: Version 1.0.2 (2022-10-09), Copyright ©

 2018-2022 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
03.1

Requirements Basics

Q
ua

lit
y

Compliance
Ability to meet rules and standards
CMP

Certi!cation
Ability to con!rm certain characteristics

CRT

Licensing
Ability to permit to own and
use something

LCN

Pricing
Ability to have reasonable price and
permit charging for a product

PRC

Maintainability
Ability to cope with changing
environments and requirements

MNT

Operability
Ability to be reasonably operated
OPR

Supportability
Ability to be reasonably supported

SPP

Testability
Ability to be completely and
repeatably tested

TST

Comprehensability
Ability to be easily understood

CPY

Traceability
Ability to track the path
something takes

TRC

Measurability
Ability to measure characteristics
according to de!ned metrics

MSR

Usability
Ability for ease of use, user-friendliness,
accessibility, convenience, intuitiveness

USB

E"ciency
Ability to perform work in the most
economical way: good input/output ratio

EFFReliability
Ability to perform required functions under
stated conditions for a speci!ed time

RLB

Fidelity
Ability to reproduce state and
behaviour of the real world

FDL E"cacy
Ability to perform work in order to
getting things done and meeting targets

EFC

E#ectiveness
Ability to perform the "right" work by
setting right targets to achieve goals

EFV

Interoperability
Ability to correctly operate and exchange
information with foreign components

ITY

Compatibility
Ability to correctly operate despite
expected older or newer interfaces

CPT

Adaptability
Ability to cope with smaller changes in
the run-time environment

ADP

Portability
Ability to cope with larger changes in
run-time environment

PRT

Con!gurability
Ability to individualize state and behaviour
by non-destructive instructions

CFG

Customizability
Ability to individualize state and beha-
viour by possibly destructive instructions

CST

Extensibility
Ability to extend state and behaviour
in a controlled way

EXT

Tailorability
Ability to adjust state and behaviour
in a controlled way

TLR

Modi!ability
Ability to change state and behaviour
in an arbitrary way

MDF

Resilience
Ability to provide an acceptable level of
service in face of faults and challenges

RSL

Robustness
Ability to withstand stress, pressure, or
changes in procedure or circumstances

RBS

Stability
Ability to not su"er from internal
failures in service

STB

Durability
Ability to keep interfaces and
functionality as is for a period of time

DRB

Integrity
Ability to keep state consistency
and avoid data corruption

INT

Performance
Ability to e#ciently perform work, i.e.,
with a good work to time & resource ratio

PRF

Scalability
Ability to scale mostly linearly with
changing requirements or conditions

SCL

Responsiveness
Ability to respond quickly to
external interaction

RSP

Flexibility
Ability to be easily modifyable in order
to respond to altered circumstances

FLX

Modularity
Ability to consist of individually
comprehensible modules

MDL

Orthogonality
Ability to follow great separation of
concerns in design

ORT

Simplicity
Ability to be plain, natural, straight-forward
and with no observable complexity

SMP

Relevance
Ability to serve as a means to a
given purpose

RLV

Predictability
Ability to predict state and
behaviour under run-time

PRD

Precision
Ability to be exact and accurate
in operation

PRN

Correctness
Ability to be algorithmically correct
with respect to the speci!cation

CRS

Provability
Ability to mathematically prove
algorithmical correctness

PRV

Safety
Ability to protect against undeliberate
failures, errors and accidents

SFT

Security
Ability to protect against deliberate
destruction, damage and harm

SEC

Availability
Ability to be operationally
available anytime

AVL

Ubiquity
Ability to be operationally
present anywhere

UBQ

Repeatability
Ability to repeat state and behaviour
in sequence

RPT

Reproducability
Ability to reproduce state and behaviour
from scratch

RPR

Recoverability
Ability to recover state and behaviour
after a disastrous failure

RCV

Reusability
Ability to reuse code or data
with slight or no modi!cations

RSB

Co
m

pl
ia

nc
e

Ex
ec

ut
io

n
In

te
rfa

cin
g

Ev
ol

ut
io

n

Pe
rfo

rm
an

ce
St

ru
ct

ur
e

Co
rre

ct
ne

ss
Pr

ot
ec

tio
n

Av
ai

la
bi

lit
y

O
pe

ra
tio

n
Us

ab
ilit

y

Accessibility
Ability to be used by people with
disabilities.

ACC

… … … …

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.9 (2020-08-13), Authored 2009-2020 by D
r. Ralf S. Engelschall, based on ISO

/IEC FD
IS 9126-1:2000

G
raphical llustration: Version 1.1.1 (2019–07-18), Copyright ©

 2011-2019 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
03.2

Non-Functional Requirements

	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1

