
Dr. Ralf S. Engelschall

Software Engineering
in der industriellen Praxis

(SEIP)



The Workflow Model describes the work segregation in
Software Engineering. In the Workflow, three main and
two auxiliary workflow cycles express the iterative
approach. The full main-cycle workflow is usually based
on business-value-adding user scenarios.

The three main cycles are interlinked and can cycle
through their steps at different speeds, S(x), with S(BIZ)
is greater or equal S(DEV), which in turn is greater or
equal S(OPS). Because the cycles with earlier steps
should not slow down the cycles not later steps.

The step colors represent workflow emphasis. Workflow
steps are executed in sequence but may be skipped if
dispensable.

The ten discipline areas of Software Engineering
express the different roles of involved people. The five
inclinations express the different types of involved
people. Hence the Workflow consists of exactly five
cycles.

Questions

What does the Workflow-Model of Software
Engineering describe?





Software Engineering, on an operational level, can be
alternatively understood through 20 distinct Steps
which are continuously performed within the Software
Engineering Workflow. Each Step belongs to one
primarily responsible Discipline and zero or more
secondarily responsible Disciplines.

Workflow Steps are the adequate concept to
understand which activities have to be performed in
each iteration of a Software Engineering Process.

Questions

Which concept allows one to best understand
which activities have be performed in a Software
Engineering Process?





The workflow has five main cycles which continuously
iterate through their steps. Workflow steps are
executed in each cycle in sequence but may be skipped
if dispensable.

The workflow steps are annotated with discipline areas
to express operative responsibilities. In each area,
multiple roles act.

The workflow roles are held by individual persons. Each
role is primarily responsible for a particular workflow
step. In addition, each role can be secondarily
responsible for other workflow steps or at least actively
support those steps.

To create a particular project execution schedule, the
five cycles, their iterations and their steps have to be
mapped onto a timeline. The cycles are mapped onto
(horizontal) timeline tracks, the iterations are mapped
onto (vertical) timeline phases, and the steps are
mapped onto timeline activities.

The activities across the cycles can (and should) be
linked into individual (diagonal) waterfall-like flows,
although the execution schedule, from the perspective
of the cycles, is fully iterative. There are multiple such
flows in parallel, and they are usually highly interleaved
on the project timeline in order to maximally utilize the
team.

Questions

How can maximum utilization of the team be
achieved in Software Engineering, despite a
division of labor?





The four Artifact Sets just cluster the individual
Artifacts and their contained Aspects. The Artifacts
can be represented in an arbitrary graphical and/or
textual form and be provided in an arbitrary format.
The Aspects just structure an individual Artifact
internally.

In a Software Engineering project, additional internal
Artifacts are created by the Disciplines in order to
perform their work efficiently and effectively. The
shown Artifacts are just the external ones which glue
together the Disciplines and which are part of the
delivery set.

Each Artifact is tagged with the primarily and
secondarily responsible Disciplines, the primary Step
of the Workflow where the Artifact is developed, and
the Scalability Layer (1 to 3, indicating more to lesser
importance).

The Software Requirements Specification and the
Software Documentation Results primarily have a
domain-specific focus. The Software Architecture
Specification and the Software Implementation
Results primary have a technological focus.

Questions

What focus has the Software Requirements
Specification?





Software products follow a life-cycle of seven
temporal, non-equally sized phases. Software
Engineering disciplines individually focus their efforts
on those phases, and their efforts either bottom-up
depend on the domain-specific scope, or their efforts
top-down do not depend on it. The amount of required
human resources differs between those phases, too.

Effort estimations have to take disciplines, their phase
focus, their domain-specific scope dependency, and
the human resource staffing curve into account.

Furthermore, the seven sequential phases especially do
not conflict with agile process models: agile time
periods (named “sprints” in Scrum) merely subdivide
the individual phases.

Questions

What is the Software Engineering Phase called,
which has the greatest personnel requirements
and in which primarily the functionalities are
realized?





The Cone of Uncertainty tells how the variability of
the project scope (measured in Effort, Cost or Features)
in Software Development changes over time. The early
development phases Inception and Elaboration
especially have to ensure that the variability is reduced
noticeably.

For iterative/agile approaches, experience showed that
during the Construction phase, inherently the final
scope further shifts due to the just step-by-step learned
required details of the required solution.

The Elaboration phase is especially important for the
creation of the Walking Skeleton, where all the
technical integrations of libraries, frameworks, build
procedures, etc., are done without already
implementing any domain-specific functionalities.

Because of the Cone of Uncertainty, Agile Fixed-Price
project contracts usually differentiate between the
early phases Inception and Elaboration and the main
phases Construction and Transition. The contract
conditions of the latter usually depend on figures
which seriously can only be estimated at the end of the
Elaboration phase.

Questions

What is especially developed in the project phase
“Elaboration”?





Effort Estimations are usually based on a Three-Point
Estimation where a weighted average of “best case”,
“most likely” and “worst case” are used. A good
estimation variability in practice is about +/- 20%.

For Expert Estimations, a fixed scale of estimation
sizes are usually used in practice, which is based on the
Fibonacci sequence of numbers, to take into account
the fact that higher estimated efforts also have higher
estimation variability.

Additionally, one usually has to post-adjust the
estimation of experts to further take into account the
different skill and experience levels between the task
estimator and the subsequent task performer, the usual
human optimism of the estimator and the practical
meeting and inevitable communication distractions of
the performer.

In case of uncertainty because of entirely unknown or
at least just partially known aspects Domain,
Technology, Process and People, the total estimated
efforts of the usual project phases have to be
additionally upscaled.

Questions

What variability does a good Estimation have?



The Requirements Specification is a binding
document in which primarily the WHAT and WHY of the
solution is specified, however not the concrete
technical HOW. The set of requirements must be
correct, unambiguous, complete, consistent,
prioritized, verifiable, changeable and traceable.

There are two types of requirements: Functional
Requirement (“Shall Do”, functionality) and Non-
Functional Requirements (“Shall Be”, Conditions, in
English often expressed with words ending in “-ility”).
The architect primarily takes care of the latter.

Requirements can also be reciprocally positive
(backing) or negative (trade-off). The architect also
primarily takes care of the latter.

Requirements should be “SMART”: Specific,
Measurable, Achieveable, Relevant and Time-Bound.

In addition, requirements are either Enduring (fixed) or
Volatile (unstable). The architect should pay attention
to the latter.

Questions

What kind of requirements should the architect
primarily keep in mind and should be explicitly
addressed by him in the solution finding?





There are potentially many Non-Functional
Requirements. For any solution, one must therefore
first determine the actual quantity of such
Requirements. This quantity must be minimized by the
Architect!

For every contractually stipulated Requirement, one
should take into account that it is clearly defined since
there are great similarities between Requirements and
the differences are sometimes very subtle.

A few of the Non-Functional Requirements that almost
always have to be considered in practice are
Maintainability, Usability, Security, Availability,
Reliability, Performance, Responsiveness and
Adaptability.

Questions

Name 3 in practice frequently considered Non-
Functional Requirements!




	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions

