TECHNISCHE
MUNCHEN

Software Engineering

in der industriellen Praxis
(SEIP)

Dr. Ralf S. Engelschall

F

PRODUCT
FOCUS

ITERATIVE APPROACH:
The three main and two
auxiliary workflow cycles
express a fully iterative
engineering approach.

FULL-CYCLE SCOPE:
The scope of the full
main-cycle workflow
usually is based on
business-value-adding
user scenarios.

PEOPLE INCLINATIONS:
The five workflow cycles
intentionally loosely align
with the usual inclinations,
which express the different
types of involved people.

The Workflow Model describes the work segregation in
Software Engineering. In the Workflow, three main and
two auxiliary workflow cycles express the iterative
approach. The full main-cycle workflow is usually based
on business-value-adding user scenarios.

The three main cycles are interlinked and can cycle
through their steps at different speeds, S(x), with S(BIZ)
is greater or equal S(DEV), which in turn is greater or
equal S(OPS). Because the cycles with earlier steps
should not slow down the cycles not later steps.

The step colors represent workflow emphasis. Workflow
steps are executed in sequence but may be skipped if

dispensable.

ENGINEERING
FUNDAMENTALS

WHY ? WHEN ?
PRD WHAT ? PRJ
PRODUCT PROJECT
MANAGEMENT BI Z MANAGEMENT
BUSINESS

TECHNISCHE
UNIVERSITAT
MUNCHEN

Software Engineering Workflow TLTI

ﬂ PROJECT

Communication &
Orchestration

Problem &
Solution

DOMAIN
FOCUS

Business &
Deliverables

FOCUS

EMPHASIS AND SEQUENCING:
The workflow step colors
represent the usual workflow
emphasis. Workflow steps are
executed in sequence but

may be skipped if dispensable.

INTERLINKED CYCLES:
The three main cycles are
inter-linked and can cycle

through their steps at
different speeds S(x):
S(BIZ) = S(DEV) = S(OPS)

WHERE ?

OPS

OPERATIONS

DISCIPLINE RESPONSIBILITY:
Each workflow step has
one or more disciplines

which are responsible for
continuously performing
the step in practice.

gVELOPMENT
O,
8,

Software &
Systems

TECHNOLOGY
FOCUS

The ten discipline areas of Software Engineering
express the different roles of involved people. The five
inclinations express the different types of involved
people. Hence the Workflow consists of exactly five
cycles.

Questions

©@ What does the Workflow-Model of Software
Engineering describe?

o

=
w

IS
Q
=
17
2
1%}
g
i~
©

[E e Software Engineering Steps

PRODUCT PRD BUSINESS BIZ DEVELOPMENT DEV
MANAGEMENT EFFORTS EFFORTS

ENVISION UNDERSTAND DESIGN

CONFIGURE IDEATE IMPLEMENT

RELEASE EXPLORE

ROLLOUT SPECIFY VERIFY

DOM

uiD

&5

Software Engineering, on an operational level, can be
alternatively understood through 20 distinct Steps
which are continuously performed within the Software
Engineering Workflow. Each Step belongs to one
primarily responsible Discipline and zero or more
secondarily responsible Disciplines.

Workflow Steps are the adequate concept to
understand which activities have to be performed in
each iteration of a Software Engineering Process.

OPERATIONS
EFFORTS

DEPLOY

INTEGRATE

OPERATE

MONITOR

Questions

TECHNISCHE
m UNIVERSITAT
MUNCHEN
PROJECT PRJ
MANAGEMENT

INITIATE

DEFINE

© Which concept allows one to best understand
which activities have be performed in a Software

Engineering Process?

D

‘pansasay SO v .

s|pob 29 sdays

ENGINEERING
FUNDAMENTALS

Y

Software Engineering Process

TECHNISCHE
UNIVERSITAT
MUNCHEN

mm

1. WORKFLOW CYCLES 4. PROJECT SCHEDULE: o] T e
The workflow has five cycles To create a particular project Eleca e NHe]
which continuously iterate execution schedule, the five cycles, MG AD
through their steps. Workflow their iterations and their steps have § 2 E E E Z g g 2 S35
steps are executed in each cycle to be mapped onto a timeline. The = I = — = — =11
in sequence, but may be skipped cycles are mapped onto (horizontal) & g g|e g g glg|o|a|e 2121212 (¢l2|8 |2
g N . A o £|= o|2|E|e|e|g|=|< 33 s g3
if dispensable in a particular timeline tracks, the iterations are > £ |8 25| EEE > S5 E = é SIS
iteration of the process. The length mapped onto (vertical) timeline b i 2 % 3 § 818 E 3 “E‘ § § g g g § _Ei E
of an iteration is arbitrary, but can phases, and the steps are mapped HEEE BRI EE E|E5(B|2|2|2|2
be e.g. about 1/3 of a Scrum sprint. onto timeline activities. E g I% g g AE|E % RS ala @ s> (& -g
5 5= &8 |2
2. WORKFLOW STEPS: 5. PROCESS FLOWS (THE CRUX): gl 12|28 S
Thg workﬂpw ster{s describe a The activities across t'he cygles ENVISION [+
logical activity which has to be can (and should) be linked into = |conFiGURE | + | + | + F-
performed. Each step relates individual (diagonal) waterfall-like = |RELEASE + + + +
to one or more discipline areas flows, although the execution ROLLOUT + | +
and their corresponding disciplines, schedule, from the perspective of UNDERSTAND| + +
which express the operative the cycles, is fully iterative. There are IDEATE + +
responsibilities for each workflow multiple such flows in parallel and EXPLORE + 1+ +
step. In each discipline individual they are usually highly interleaved SPECIFY + + + 1 4]+ +
roles act. on the project timeline in order DESIGN T B S =
to maximally utilize the team. HECEMENT = - ..
<! |BUILD E R + +
3.WORKFLOW ROLES: VERIFY [P P R R A "
The workflow roles are held by 6. PROCESS ADAPTION: DEPLOY + + T+ +
individual persons. Each role is In the meta-step ADAPT, the "t [INTEGRATE + + [+ +
primarily responsible for a process is adapted by choosing = |OPERATE +
particular workflow step. In which workflow steps are required MONITOR Ll |+ +
addition, each role can be for the next iteration. The major ADAPT +l+]+ +
secondarily responsible for input for this decision is the current INTIATE _ -
other workflow steps or at least solution state and the feedback =l DEFINE 3 | b responsible (primarily)
actively support those steps. on it by the customer. pran i + Jisshonsbickeecondarly)
. . STEER dblldb ik + supporting

‘gvm 10|

[
il

PRD R c [[} (R [k |

BIZ : | E [Efs B | S | 1 S |

DEV oo ONONDNGENm, DD, D

ops 0 [To Mo] To [\ { o e o [0 Jm 0

- NS tolrls] P T <1 B oE
iteration 1 iteration 2 : iteration 3 iteration 4 iteration 5 iteration 6

The workflow has five main cycles which continuously
iterate through their steps. Workflow steps are
executed in each cycle in sequence but may be skipped
if dispensable.

The workflow steps are annotated with discipline areas
to express operative responsibilities. In each area,
multiple roles act.

The workflow roles are held by individual persons. Each
role is primarily responsible for a particular workflow
step. In addition, each role can be secondarily
responsible for other workflow steps or at least actively
support those steps.

To create a particular project execution schedule, the
five cycles, their iterations and their steps have to be
mapped onto a timeline. The cycles are mapped onto
(horizontal) timeline tracks, the iterations are mapped
onto (vertical) timeline phases, and the steps are
mapped onto timeline activities.

iteration 7

The activities across the cycles can (and should) be
linked into individual (diagonal) waterfall-like flows,
although the execution schedule, from the perspective
of the cycles, is fully iterative. There are multiple such
flows in parallel, and they are usually highly interleaved
on the project timeline in order to maximally utilize the
team.

Questions

© How can maximum utilization of the team be
achieved in Software Engineering, despite a
division of labor?

szo JEE]

SYSDI 23 Saj0.L

ENGINEERING
FUNDAMENTALS
i

Requirements: | REQ | @ZBD Domain Model: | REQ || DOM |
Customer Journey Personas 3]
Requirements: | REQ | GG Domain Model: ' REQ || DOM |
Solution Vision (2] Test Cases (3]
Requirements: | PRD | @G Userinterface:
Functional Requirements Usage Concept
Requirements: | PRD | User Interface: | REQ |

Non-Functional Requirem. Language Conventions (3]

Domain Model: | REQ | User Interface:
Data Model Dialog Patterns
Domain Model: | REQ | User Interface: | REQ |
Use Cases Dialog Storyboard (1]
Domain Model: | REQ | User Interface: | PRD |
Use Case Scenarios 2] Visual Design (3]

y

2 Software Architecture Specification input / how ARC

SYA 1 SWA | PRD DEV | SWA | DPL

ENVISION 3 1 INTEGRATE

DOM " SYA | SWA OPS | DPL | SYA | SWA
1 DESIGN
DOM | SWA SWA PL | OPS
1 DESIGN 2 OPERATE

DEV | SYA | SWA DEV | SYA | SWA

2 2 DESIGN

ASM | VER | SWA | DEV DEV | SWA
30 IMPLEMENT 3

SYA | SWA | OPS | DPL PRD = TST = SWA | DEV
1 DEPLOY 30 u

SYA | SWA | DPL | OPS DEV | SWA
2 operate 1

The four Artifact Sets just cluster the individual
Artifacts and their contained Aspects. The Artifacts
can be represented in an arbitrary graphical and/or
textual form and be provided in an arbitrary format.
The Aspects just structure an individual Artifact
internally.

In a Software Engineering project, additional internal
Artifacts are created by the Disciplines in order to
perform their work efficiently and effectively. The
shown Artifacts are just the external ones which glue
together the Disciplines and which are part of the
delivery set.

TECHNISCHE

[[(]
Software Engineering Artifacts TUTI . -

3 Software Implementation Results

output /what IMP E
o
o
o

REF | DEV ASM

1] IMPLEMENT 1 BUILD
DEV | VER | ASM DEV | VER | DPL

2 BUILD. 3 DEPLOY

DEV | TST DEV | OPS

3 VERIFY 3 OPERATE

Notice: Internal vs. External

Notice: Artifacts vs. Aspects

The four Artifact Sets shown here just
cluster the individual Artifacts and
their contained Aspects. The Artifacts
can be represented in an arbitrary
graphical and/or textual form and be
provided in an arbitrary format. The
Aspects just structure an individual
Artifact internally.

In a Software Engineering project,
additional internal Artifacts are
created by the Disciplines in order to
perform their work efficiently and
effectively. The Artifacts shown here
are the external ones which glue
together the Disciplines and which
are part of the delivery set.

y

4 Software Documentation Results output / how DOC

User Guide: Operation Guide:
Usage Tutorial Configuration Reference ()
User Guide: | DOM | Operation Guide:
Functionality Reference Deployment Procedure g
User Guide: ' PRD | VER Operation Guide: E

Release Information 3] Operation Procedures 2]

Notice: Artifact Tagging Notice: Domain vs. Technology

The Software Requirements
Specification and the Software
Documentation Results primarily
have a domain-specific focus. The
developed, and the Scalability Layer Software Architecture Specification
(1 to 3, indicating more to lesser and the Software Implementation
importance). Results primary have a
technological focus.

Each Artifact is tagged with the
primarily and secondarily responsible
Disciplines, the primary Step of the
Workflow where the Artifact is

$9]QqD.12AYIP 2 SIODJID

Each Artifact is tagged with the primarily and
secondarily responsible Disciplines, the primary Step
of the Workflow where the Artifact is developed, and
the Scalability Layer (1 to 3, indicating more to lesser
importance).

The Software Requirements Specification and the
Software Documentation Results primarily have a
domain-specific focus. The Software Architecture
Specification and the Software Implementation
Results primary have a technological focus.

Questions

© What focus has the Software Requirements
Specification?

ENGINEERING [] TECHNlSCHE
£ ~=ws Software Engineering Efforts TUT e
Software products follow a life-cycle of seven temporal, non-

equally sized phases. Software Engineering disciplines DEVELOPMENT MAINTENANCE E
o
@

individually focus their efforts on those phases and their

fforts either bottom-up depend on the domain-specif . . . o . . o
etone or ton-dom do mot epend on it The amauntof Inception Elaboration ' Construction Transition | Production Retirement Termination

required human resources differs between those phases, too. Initial project setup Scope is roughly Product step by step | Final product version J|' Product is regularly Product is bug-fixed Product termination
Effort estimations have to take disciplines, their phase focus, by defining the goal specified, and in full detail is officially rolled out bug-fixed and only and updated in by archiving all
their domain-specific scope dependency, and the human and establishing all architecture is is specified, through final dependency upgraded, production on sources and data and
resource staffing curve into account. necessary resources. defined and walking = implemented, tested ~ deployment and and updated in demand only. destroying all
skeleton is crafted. and deployed. user training. production. f infrastructures.
H Temporal Human Resourée
REQ Requirements Phase Staffing Curve

Effort
Focus

I -
Primary Peek

AN

DOM Domain Modeling
UXP User Experience

NN N

UID | User Interface Design
SWA Software Architecture
SYA System Architecture

DEV Software Development

DV AR | EX

ALY

REF | Software Refactoring

VER | Software Versioning

ASM Software Assembly

DPL Software Deployment

OPS System Operations < IR

Non-Scope-Dependent Effort

T
v

60% Bottom-Up

REV Software Review b

TST Software Testing

DOC Usage Documentation
TRN User Training
PRD Product Management

PRJ Project Management
COA Project Coaching

NN NN NN

AD MG CP AC DL

sp.i0ffa 2 saspyd

CHG Change Management

Software products follow a life-cycle of seven Furthermore, the seven sequential phases especially do
temporal, non-equally sized phases. Software not conflict with agile process models: agile time
Engineering disciplines individually focus their efforts periods (named “sprints” in Scrum) merely subdivide
on those phases, and their efforts either bottom-up the individual phases.

depend on the domain-specific scope, or their efforts
top-down do not depend on it. The amount of required Questions
human resources differs between those phases, too.
@ Whatis the Software Engineering Phase called,
Effort estimations have to take disciplines, their phase which has the greatest personnel requirements

focus, their domain-specific scope dependency, and and in which primarily the functionalities are
the human resource staffing curve into account. realized?

Y Uncertainty & Elaboration TUT e

Cone of Uncertainty Essential Elaboration Phase

x4,00 @

Variability
of Project Scope
(Effort, Cost, Features)
Inherent scope shift caused by modifications
X 2,00 of the scope even during Construction phase
. duetoi il 1
1,50
. + =0 x140
x 1,25
x 1,00 x 1,00
11,25
/1,50
/2,00
roject
Development
Time
/4,00 ® >
0% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Inception Elaboration Construction

The Cone of Uncertainty (Steve McConnell, 2006) tells how the variability of
the project scope (measured in Effort, Cost or Features) in Software
Development changes over time. Initially, it usually is within the range of
+/- 400% of the final scope.

The early development phases Inception and Elaboration especially have
to ensure that within the first 20% of the project, the variability is reduced
noticeably to just +/- 50%. During the initial iterations of the Construction
phase within the first 30% of the project, the variability usually can be
further reduced to about +/- 25%.

For iterative/agile approaches, experience showed that during the
Construction phase inherently the final scope further shifts by about
+40% due to the just step-by-step learned required details of the required
solution. This especially has to be taken into account for estimations.

The Cone of Uncertainty tells how the variability of
the project scope (measured in Effort, Cost or Features)
in Software Development changes over time. The early
development phases Inception and Elaboration
especially have to ensure that the variability is reduced
noticeably.

For iterative/agile approaches, experience showed that
during the Construction phase, inherently the final
scope further shifts due to the just step-by-step learned
required details of the required solution.

The Elaboration phase is especially important for the
creation of the Walking Skeleton, where all the
technical integrations of libraries, frameworks, build
procedures, etc., are done without already
implementing any domain-specific functionalities.

zeo [EE]

Walking Skeleton:

The Walking Skeleton (or Technical Breakthrough) is the design and @
implementation of the bare technical foundation of an application, =
still without any domain-specific functionalities. It is made during A \
the Elaboration phase with the primary purpose to establish a /l\ 5 L
stable integration of all technical aspects (libraries, frameworks, [

build procedures, etc) onto which the domain-specific) ‘L
functionalities later can be successively put onto.

Agile Fixed-Price Contracts:

Inception Elaboration Transition

Contract Conditions 1 Contract Conditions 2

Deferred Estimated Figures
for Contract Conditions 2

The Agile Fixed-Price is an agile variant of a fixed-price contract,
not a fixed-price project with an agile development process.

There are two important inherent aspects:

First, the contract contains two types of conditions: one (usually
Time & Materia! but fixed duration based) for the Inception and
Elaboration phases in order to make experiences and to gather
necessary figures, and one (usually Fixed-User-Story and/or Fixed-
Price based) for the Construction and Transition phases based on
deferred estimated figures, gathered in the Elaboration phase.

Second, the Fixed-Price aspect of the contract is actually based
on an amount of User-Stories (resulting in costs by multiplying them
with either an average hourly rate of an engineer or individual rates
based on engineer job levels), which the customer can 1:1 exchange
during the project for different deliverables.

The crux of an Agile Fixed-Price contract is: first, during the
Inception and Elaboration phases the supplier can shrink the Cone
of Uncertainty and this way its risks dramatically, and second, during
the Construction and Transition phases the customer still remains
flexible in scope.

uoyv.L0qD]a 2 fijuIn}LPoUN

Because of the Cone of Uncertainty, Agile Fixed-Price
project contracts usually differentiate between the
early phases Inception and Elaboration and the main
phases Construction and Transition. The contract
conditions of the latter usually depend on figures
which seriously can only be estimated at the end of the
Elaboration phase.

Questions

@ Whatis especially developed in the project phase
“Elaboration”?

F ENGINEERING o o TECHNISCHE
FUNDAMENTALS Effort E t t Tlm UNIVERSITAT
— stimations MONCHEN

Three-Point Estimation and Estimation Variability Classes: 1. Ask Estimater:
“How many Person-Days do you need
e=(b+4xm+w)/6 expected effort (weighted average) when you can focus on this task?”
s=(w-b)/6 standard deviation (effort variation)

2. Convert from Estimator to Performer:

Is0 CAP model, http://cap-model.
b: best-case (optimistic) CeeaieoCilinede ite: Iapameceteon)

m: most-likely (realistic)

L Performer
w: worst-case (pessimistic) "
Non-Linear
Insane Variability: +/-10% Effort Reduction
Very Good Variability: +/-15%

Good Variability: +/-20%
Acceptable Variability: +/- 25%

Practitioner 10%

Novice

Practitioner
Master
Expert
Guru

°

Estimator

Sizes & Variability Risk Mitigation & Upscaling
Estimation Sizes and Estimation Variability: 3. Adjust for Reality:
Estimator Optimism: +30%

T-Shirt-Size (Logically) Performer Meetings: +20%

Fibonacci-Size (PD or SP) 4. Adjust for Uncertainty:
Size Variability (-) ,25

050 | 050 [1,00 [1,50
Size Variability (+) 025 050 | 050 [1,00 | 1550 | 2,50 |

Domain Technology

Inception
Elaboration
Inception

Elaboration

Notice: Estimations can be done in Person-Days (PD) or

Story-Points (SP). In both cases, keep in mind to use amn

something like the Fibonacci numbers which increase in a T
non-linear fashion and express the increasing variability }

with the increasing total amount of estimated effort.
© — Process
! N —

partially known
s fully known

unknown
partially known
fully known

unknown
partially known
fully known

People

=
< £
2 =
2 o
5 2
e =
£ o

Inception

unknown
partially known
fully known

Effort Estimations are usually based on a Three-Point In case of uncertainty because of entirely unknown or
Estimation where a weighted average of “best case”, at least just partially known aspects Domain,

“most likely” and “worst case” are used. A good Technology, Process and People, the total estimated
estimation variability in practice is about +/- 20%. efforts of the usual project phases have to be

additionally upscaled.
For Expert Estimations, a fixed scale of estimation
sizes are usually used in practice, which is based on the Questions
Fibonacci sequence of numbers, to take into account

the fact that higher estimated efforts also have higher © What variability does a good Estimation have?
estimation variability.

Additionally, one usually has to post-adjust the
estimation of experts to further take into account the
different skill and experience levels between the task
estimator and the subsequent task performer, the usual
human optimism of the estimator and the practical
meeting and inevitable communication distractions of
the performer.

zeo [EE]

sp10ff2 2 fipupiaaoun

W ARCHITECTURE
f FUNDAMENTALS

The documented set of requirements has to be:
correct, unambiguous, complete, consistent, ranked,

verifiable, modifiable, and traceable.

Requirement Classes

FR Functional (Shall Do)

A condition or capability that a
solution must have to provide its
service in terms of its behaviour and
information. Think:

Functionality.

NFR Non-Functional (Shall Be)

A condition, property or quality
that a solution must have to
satisfy a contract, standard,

or other formally imposed
obligation. Think:

Constraints and “*-ilities”.

[]

Requirement Interdependencies

POS Positive (Backing)

One requirement supports the other
(e.g. for NFRs: Maintainability and
Comprehensibility usually support

Adaptability, Portability, Modifiability,

etc., and Scalability usually
supports Availability, etc.) @

NEG Negative (Trade-Off)

One requirement interferes with the
other (e.g. for NFRs: Security usually
interferes with Efficiency, Usability,
Performance, etc., and Orthogonality
can interfere with Usability)

&

Requirements Basics

A binding document that specifies the requirements for a
solution, by focusing on the WHAT and WHY of the solution —
and not giving instructions for the HOW.

S Specific

The requirement is precise,
unambiguous, and clear

on what should
be done.

M Measurable

The requirement can be
verified when it has been
achieved by use of a
particular test.

A Achievable

The requirement is
achievable given existing
circumstances and
feasible and viable
solutions.

R Relevant

The requirement is relevant

to the goals of the
context.

T Time-Bound

The requirement can be
achieved within a

reasonable time D
frame.

TECHNISCHE

m UNIVERSITAT
MUNCHEN

Requirement Life-Time E
&

E Enduring

The requirement lasts forever,
as it is derived from core
activities and

organisational

structures.

V Volatile

The requirement can be
temporary, as it might @
change over time.

Requirement Expression

[<reg-id>] <reg-name>:
<subject/actor>

SHALL
<result/action/condition>
BECAUSE

<rationale>

The Requirements Specification is a binding
document in which primarily the WHAT and WHY of the
solution is specified, however not the concrete
technical HOW. The set of requirements must be
correct, unambiguous, complete, consistent,
prioritized, verifiable, changeable and traceable.

Requirements should be “SMART": Specific,
Measurable, Achieveable, Relevant and Time-Bound.

In addition, requirements are either Enduring (fixed) or
Volatile (unstable). The architect should pay attention
to the latter.

There are two types of requirements: Functional
Requirement (“Shall Do’, functionality) and Non-
Functional Requirements (“Shall Be", Conditions, in
English often expressed with words ending in “-ility”).
The architect primarily takes care of the latter.

Questions

©® What kind of requirements should the architect
primarily keep in mind and should be explicitly
addressed by him in the solution finding?

Requirements can also be reciprocally positive
(backing) or negative (trade-off). The architect also
primarily takes care of the latter.

TECHNISCHE

[+ =5 Non-Functional Requirements TUTI

PRD Predictability
Ability to predict state and
behaviour under run-time

CMP Compliance

Ability to meet rul standards

CRT Certification

Ability to confirm certain characteristics

FDL Fidelity
Ability to reproduce state and
behaviour of the real world

RLV ' Relevance
Ability to serve as a means to a
given purpose

LCN ' Licensing
Ability to permit to own and
use something

Compliance

PRN ' Precision
Ability to be exact and accurate
in operation

PRC | Pricing
Ability to have reasonable price and
permit charging for a product

OPR ' Operability
Ability to be reasonably operated

SPP Supportability

Ability to be reasonably supported

Correctness

CRS | Correctness
Ability to be algorithmically correct
with respect to the specification

PRV | Provab

Ability to mathematically prove
algorithmical correctness

SFT | Safety
Ability to protect against undeliberate
failures, errors and accidents

MNT Maintainability
Ability to cope with changing
environments and requirements

TST Testability
Ability to be completely and
repeatably tested

TRC Traceability
Ability to track the path
something takes

MSR ' Measurability
Ability to measure characteristics
according to defined metrics

SEC Security

Protection

Operation

AVL Availability
Ability to be operationally
available anytime

UBQ | Ubiquity
Ability to be operationally.
present anywhere

USB Usability RPT Repeatability

Ability to repeat state and behaviour
in sequence

Availability

RPR | Reproducabi

Ability to reproduce state and behaviour
from scratch

CPY Comprehensability

Ability to be easily understood

ACC Accessibility RCV ' Recoverab

Ability to be used by people with
disabilities.

Ability to recover state and behaviour
after a disastrous failure

There are potentially many Non-Functional
Requirements. For any solution, one must therefore
first determine the actual quantity of such
Requirements. This quantity must be minimized by the
Architect!

For every contractually stipulated Requirement, one
should take into account that it is clearly defined since
there are great similarities between Requirements and
the differences are sometimes very subtle.

EFF Efficiency

Ability to perform work in the most

Ability to perform required functions under
sta economical way: good input/output ratio

&
RSL | Resilience F=l EFC Efficacy
Ability to provide an acceptable level of b= B Ability to perform work in order to
service in face of faults and challenges g getting things done and meeting targets
> RBS ' Robustness ol Erv Effectiveness
E=3 Ability to withstand stress, pressure, or Ability to perform the "right" work by
o changes in procedure or circumstances setting right targets to achieve goals
=]
(@] STB Stability
Ability to not suffer from internal (o)) ITY Interoperability
failures in se c
BB Ability to correctly operate and
= (SR information with fore
DRB ' Durability g
Ability to keep interfaces and
functionality as is for a period of time P_-,J CPT Compatibility
c Ability to correctly operate despite
= I expected older or newer interfaces
INT Integrity
Ability to keep stat c
RSB ' Reusability
Ability to reuse code or data
with slight or no modifications
PRF Performance
Ability to efficiently perform work, i.e., ADP ili
8 with a good work to time & resource ratio - Ad‘aptablllty .
Ability to cope with smaller changes in
c the run-time environment
g SCL | Scalal
Ability to scale mostly linearly with ili
=Sl changing requirements or conditions PRT Portab'hty
Q Ability to cope with larger changes in
— " C run-time environment
[RSP Responsiveness o
[SE Ability to respond quickly to B CFG | Configurability
external interaction =] _— .
—_ Ability to individualize state and behaviour
g by non-destructive instructions
e}

CST Customizability

Ability to individualize state and beha-
viour by possibly destructive instructions

be plain, natu
ith no observable compl

FLX Flexibility
Ability to be easily modifyable in order
to respond to altered circumstances

EXT Extensibility
Ability to extend state and behaviour
in a controlled way

TLR Tailorability
Ability to adjust state and behaviour
ina controlled way

MDF | Modifial

MDL Modularity

Ability to consist of individually
comprehensible modules

Structure

ORT Orthogonality

Y
Ability to change state and behaviour
in an arbitrary way

Ability to follow great separation of
concerns in design

A few of the Non-Functional Requirements that almost
always have to be considered in practice are
Maintainability, Usability, Security, Availability,
Reliability, Performance, Responsiveness and
Adaptability.

Questions

© Name 3in practice frequently considered Non-
Functional Requirements!

	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions

