
Software Engineering in der industriellen Praxis (SEIP)

Thank you for �ying Industry Airlines.
Lecture End

To be continued.
Lecture Gap

Let’s have a meal!
LUNCH

Let’s breathe deeply!
BREAK

Fasten your seatbelts, please.
Lecture Start

Dr. Ralf S. Engelschall

Factual
LocalityFL

Resources are as spatially
and temporarily local-scoped
to solution components as possible

Exclusive
SovereigntyES

Exclusive resource sovereignty
by the enclosing component

Contextual
AdequacyCA

Neither insu�cient nor
exaggerated solutions for
each context

Solution-oriented
ProportionalitySP

Good expected proportionality
in each solution context

Holistic
ConsistencyHC

Full consistency across all
aspects of a solution

Structural
HomogeneitySH

Maximum homogeneity
in the structure of a solution

Constructional
ReusabilityCR

High reuse of proven
structural components and
partial solutions

Ful�lled
StandardsFS

Compliancy to standards as much
as possible, as long as the bene�ts
predominate the drawbacks

Functional
AbstractionFA

Suitable level of abstraction
across all functional aspects
of a solution

Functional
TraceabilityFT

Suitable traceability across all
functional aspects of a solution

Communicative
InteroperabilityCI

Maximum interoperability in
communication between
solutions

Environmental
HarmonyEH

Maximum harmony in the
integration of the solution with
its environment

Avoided
RedundancyAR

Minimum total number of
copies of a single resource

Minimum
Special-CasesMS

Minimum total number of
special-cases in a solution

Logical
SeparationLS

Separation of concerns between
the components of a solution

Structural
ModularitySM

Splitting of a solution into
manageable structural
components

Loose
CouplingLC

Loose coupling in communication
and referencing between
solution components

Strong
CohesionSC

Strong relationship between
functionalities within a single
solution component

Open
ExtensibilityOE

Solution components can be
extended by third-parties
at �xed interfaces

Closed
ChangeabilityCC

Solution components are
protected against direct change
by third-parties

Unique
Identi�cationUI

Unique identi�cation of all
components of a solution

Uniform
AddressingUA

Uniform addressing of all
components of a solution

Overall
SimplicityOS

All design aspects of a solution
are as simple as possible and
only as complicated as necessary

Encapsulated
ComplexityEC

Complex related aspects of a
solution are encapsulated into
a single responsible component

Least
AstonishmentLA

All design aspects of a solution
are as little astonishing as possible
and only as esoteric as necessary

Self
DocumentationSD

All design aspects of a solution
are preferably self-documenting

Operational
DelightOD

The solution provides users
true delight even on long-term
operation

Artistic
AestheticsAA

The solution has holistic aesthetics
and artistic love in details

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Licensed to Augsburg U
niversity for reproduction in Com

puter Science lecture contexts only..
Licensed to Technische U

niversität M
ünchen (TU

M
) for reproduction in Com

puter Science lecture contexts only.
Licensed to m

sg system
s ag for reproduction in m

sg Applied Technology Research training contexts only.
Licensed to SEA Softw

are Engineering Academ
y gG

m
bH

 for reproduction in education contexts only.

Academy
Engineering
SoftwareRa

lf S
. Engelschall Signature Series Orig

in
al

Intellectual Content: Version 1.0.15 (2022-11-05), Authored 2010-2022 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.15 (2018-08-10), Copyright ©

 2011-2018 D
r. Ralf S. Engelschall <

http://engelschall.com
>

, All Rights Reserved.
U

nauthorized Reproduction Prohibited..
04.2

A
F

Architecture Principles
1 2

3

4

5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

De�nition of a Component (of a Larger Whole):
a know-how encapsulating, potentially reusable and substitutable
unit of hierarchical composition with explicit context dependencies,
which hides the complexity of its optional behavior and state realization
behind small contractually speci�ed interfaces,
de�nes its added value in terms of provided and consumed interfaces and
optionally belongs to zero or more categories of similar units.

Example Categories of Components:
- Namespace
- Directory, File
- Con�guration, Section, Directive
- Host, Virtual Machine, Container
- Process Group, Process, Thread
- Application, Microservice, Program
- Package, Class, Function
- Database, Schema, Table, Record
- Datamodel, Entity Group, Entity
- User Interface, Dialog, Widget

Larger
Whole

ComponentCategory

Interface Behavior State

+ *
*

«component»
Foo

How to �nd Components (or Modules)?

+ * *

Module

API Operation Data

+ *

+ + *

System

De�nition of a Module (of a System):
a know-how encapsulating, potentially reusable and substitutable
source-code unit of hierarchical composition with explicit context dependencies
which hides the complexity of its operation and data implementation
behind small contractually speci�ed Application Programming Interfaces (API),
de�nes its added value in terms of provided and consumed APIs and
optionally belongs to zero or more categories of similar units.

Domain Concept
AbstractionDCA

Model domain concepts as entity
components and then group at higher levels.

Use-Case
ClusteringUCC

Build domain components for each use-case
or each logical use-case cluster.

Cross-Cutting
ConcernsCCC

Build common cross-cutting concerns
as cross-cutting components.

Divide & Conquer
Complexity DCC

Master overall complexity by splitting
larger things into smaller things.

Domain-Driven
DesignDDD

Model domain “Bounded Contexts” through
DDD and derive components from them.

Object-Oriented
DesignOOD

Model Object-Oriented Design entities
(and/or OOP constructs) as components.

Separation of
ConcernsSOC

Build components for clearly
distinct concerns.

Single Responsibility
PrincipleSRP

Build components for clearly
distinct responsibilities.

Coupling and
CohesionCNC

Decide on components based on their
loose coupling and strong cohesion.

Dependency
EncapsulationDEP

Decide on components based on their
encapsulation of dependencies.

Reusability
PotentialUSE

Decide on components based on their
reusability potential.

Architecture
PatternsPAT

Build inner components to comply to outer
structure, slicing and clustering architectures.

Provided & Consumed Interfaces

White-Box & Black-Box View

Hierarchical Composition

Any group of anything!

...

Licensed to Augsburg U
niversity for reproduction in Com

puter Science lecture contexts only..
Licensed to Technische U

niversität M
ünchen (TU

M
) for reproduction in Com

puter Science lecture contexts only.
Licensed to m

sg system
s ag for reproduction in m

sg Applied Technology Research training contexts only.
Licensed to SEA Softw

are Engineering Academ
y gG

m
bH

 for reproduction in education contexts only.

Academy
Engineering
SoftwareRa

lf S
. Engelschall Signature Series Orig

in
al

Intellectual Content: Version 1.0.3 (2020-09-08), Authored 2017-2020 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.7 (2023-10-23), Copyright ©

 2017-2023 D
r. Ralf S. Engelschall <

http://engelschall.com
>

, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
05.1

A
F

Component Design
1 2

3 4 5

well-de�ned shielding and abstracting boundary of a passive, providing component,
consisting of one or more distinguished, outside-in designed, interaction endpoints,
each accessed and controlled by active, consuming components
through the exchange of input/output information
and operating under a certain syntactical and semantical contract.

Appropriate &
ProportionalAP

Appropriate to consumer requirements,
proportional to provider functionality.

Shielding &
AbstractingSA

Shields from direct access,
abstracts and hides implementation details.

Inviting &
ExpressiveIE

Invites through “outside -- in” design,
powerful in expressiveness.

Intuitive &
FoolproofIF

Intuitive to grasp and use,
hard to misuse.

Orthogonal &
ConciseOC

Supports combinatorial use-cases,
causes minimum boilerplate.

Tolerant &
PredictableTP

Tolerant on input,
predictable on output.

Extensible &
CompatibleEC

Easy to extend for providers,
backward/forward-compatible for consumers.

Interface
Version & FeaturesIVF

Provide version and feature information for
algebraic comparison and feature detection.

Leaky Two-Layer
Facade2LF

Provide higher-level convenient use-case
and lower-level orthogonal feature interface.

Event
EmitterEVE

Emit events to previously registered,
interested consumers.

Multi-
ContextCTX

Use contexts to distinguish between di�erent
usage scenarios and to carry common info.

Con�gure-Execute
FlowCEF

Spread use-cases onto a �ow of con�guration
exchanges and a �nal executional exchange.

Inversion Of
ControlIOC

Invert control on asynchronous operations via
callbacks, promises or async. mechanisms.

Human/Machine
ResponsesHMR

Support humans and machines in outputs
through both description and parsing-free info.

Contract: Syntax, Pre-Condition, Invariant, Post-Condition,
 Side-E�ect, Idempotence, Determinism, Functionality, ...

Endpoint: Name, Directive, Command, Function, Method,
 Procedure, Address, Port, URL, Dialog, ...
Exchange: Option, Argument, Parameter, Return Value, Result,
 Request/Response Message, Error/Exception, Interaction, ...

Application Programming
InterfaceAPI

Example: foo("bar", 42)
(call and use)

Service Provider
InterfaceSPI

Example: register(”foo”, (x,k) => ...)
(extend and implement)

Startup Con�guration
InterfaceSCI

Examples: INI, Java Properties, TOML, YAML,
JSON, XML, etc.

Batch Processing
InterfaceBPI

Examples: Unix at(1), Unix ts(1), GNU Batch,
Spring Batch, Java Batch, SAP LO-BM, etc.

Command-Line
InterfaceCLI

Example: foo -x --bar=baz quux

Graphical User
InterfaceGUI

Examples: Windows/WPF, macOS/Cocoa,
KDE/Qt, GNOME/GTK

Remote Network
InterfaceRNI

Examples: GraphQL-IO, HTTP/REST, SOAP,
RMI, WebSockets, AMQP, MQTT, etc.

Types of Software Interfaces Characteristics of Good Interfaces Selected Interface Design Patterns

D
e�

ni
tio

n
of

an
 In

te
rf
ac
e:

Licensed to Augsburg U
niversity for reproduction in Com

puter Science lecture contexts only..
Licensed to Technische U

niversität M
ünchen (TU

M
) for reproduction in Com

puter Science lecture contexts only.
Licensed to m

sg system
s ag for reproduction in m

sg Applied Technology Research training contexts only.
Licensed to SEA Softw

are Engineering Academ
y gG

m
bH

 for reproduction in education contexts only.

Academy
Engineering
SoftwareRa

lf S
. Engelschall Signature Series Orig

in
al

Intellectual Content: Version 1.0.9 (2022-11-05), Authored 2015-2022 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.8 (2022-11-05), Copyright ©

 2015-2022 D
r. Ralf S. Engelschall <

http://engelschall.com
>

, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
05.2

A
F

Interface Design

1

2

1 2

3 4 5

Stroke:
Logical sequence of
Statements in a Block and one
of the two primary units of
thinking at the level of Micro
Architecture.

Slice:
Special kind of unranked Unit
for vertically grouping
(logically distinct and memory-
linked) Modules or other Slices
and Layers.

Program

Area Block

Stroke

SystemTier

Program

Unit Statement

Function

Layer

Slice

+

+

+

+

*

+

+

M
es

o
Ar

ch
ite

ct
ur

e
M

ac
ro

 A
rc

hi
te

ct
ur

e

M
ic

ro
 A

rc
hi

te
ct

ur
e

System

Unit

Slice Slice

Module Module

Module Module

Module

Function

Block

Stroke
Statement

Statement

Block

Stroke Statement
 Expression

Module Module

System:
One or more network-linked
Programs, forming a solution
as a whole and the primary
unit of thinking at the level of
Macro Architecture.

Unit:
Structuring Layer or Slice
within a Program (or within
an outer Unit).

Zone:
Structuring Tier or Area
within a System (or within
an outer Zone).

Layer:
Special kind of ranked Unit for
horizontally grouping (logically
distinct and memory-linked)
Modules or other Slices and
Layers.

Program:
Stand-alone, self-contained,
executable piece of software
and primary unit of thinking at
the level of both Macro and
Meso Architecture.

Tier:
Special kind of ranked Zone for
horizontally grouping (logically
or spatially distinct and
network-linked) Programs or
other Tiers and Areas.

Module:
Know-how encapsulating,
potentially reusable group of
Functions and primary unit of
thinking at the level of Meso
Architecture.

Function:
Operation of a Module, with a
well-de!ned interface, and one
of the two primary units of
thinking at the level of Micro
Architecture.

Block:
Sequence of one or more
Strokes within a Function or
an outer Statement and scope
for variables of inner
Statements.

Expression:
Simple or complex
representation of a single data
value.

Layer
Module

Zone

Tier

1

*

ExpressionModule

Zone
*

+

+

Area:
Special kind of unranked Zone
for vertically grouping
(logically or spatially distinct
and network-linked) Programs
or other Tiers and Areas.

Statement:
Execution of a single action,
speci!ed through one or more
Expressions and zero or more
inner Blocks.

Area Area

Area Area

Tier

Tier

Area Area

Area

Program

Area

Program

(S
of

tw
ar

e
Ar

ch
ite

ct
ur

e)
(S

ys
te

m
 A

rc
hi

te
ct

ur
e)

(P
ro

gr
am

m
in

g) Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.2.3 (2022-11-05), Authored 2018-2022 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.2.1 (2020-07-08), Copyright ©

 2018-2020 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
05.3

Component Hierarchy

Application Structure Component Types

Executable
Program

Application

Externalized
Object

Composable

SPI

Library

API

ModuleFramework

API

SPI

APIAPI

Component

Component

Component

Component

API

do
m

ai
n-

sp
ec

i!
c

te
ch

ni
ca

l

ac
tiv

e

pa
ss

iv
e

in
va

siv
e

se
lf-

co
nt

ai
ne

d

Library

Framework

Composable

Module X

X

X

X

X

X X

X

X

X

X

X

X

Technical

Domain-Speci!c

Legend:

re
qu

ire
s i

nt
eg

ra
tio

n

X

X

ow
n

lif
e-

cy
cl

e

X

X

da
ta

 p
er

sis
te

nc
e

X

X

Shared
Object

Component

Component

Executable
Program

Component

Component

Externalized
Object

Component

Component

Executable
Program

Component

Component

Pl
ug

in Applications are composed out of one
or more Executable Programs.
 An Executable Program in turn can
leverage zero or more (dedicated)
Externalised Objects and/or (reusable)
Shared Objects. Both Executable
Programs, Externalised Objects and
Shared Objects are composed through
one or more Components.
 Components are comprised of the
assets Code, Con!guration and Data
and are of four distinct types: Library,
Framework, Composable and Module,
which are distinguished by their
particular combination of
characterizing aspects.

re
us

ab
le

X

X

X

Component Assets

Code Con!guration Data

M
ic

ro
se

rv
ic

e

Script Meta Information State

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.2 (2022-05-24), Authored 2022 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.2 (2022-05-24), Copyright ©

 2022 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
11.3

Application Composition

	Canvas 1
	Canvas 1

