TECHNISCHE
TUTT voveesrs
MUNCHEN

Software Engineering in der industriellen Praxis (SEIP)

Dr. Ralf S. Engelschall

W ARCHITECTURE
7 FUNDAMENTALS

TECHNISCHE
m UNIVERSITAT
MUNCHEN

Architecture Principles

Factual
FL Locality

Resources are as spatially
and temporarily local-scoped
to solution components as possible

Contextual
CA Adequacy

Neither insufficient nor
exaggerated solutions for
each context

HC Holistic

Consistency

Full consistency across all
aspects of a solution

CR Constructional
Reusability
High reuse of proven

structural components and
partial solutions

Functional
FA Abstraction

Suitable level of abstraction
across all functional aspects
of a solution

Cl Communicative
Interoperability

Maximum interoperability in
communication between
solutions

Avoided
AR Redundancy

Minimum total number of
copies of a single resource

Exclusive
ES Sovereignty

Exclusive resource sovereignty
by the enclosing component

SP Solution-oriented
Proportionality

Good expected proportionality
in each solution context

Structural
SH Homogeneity

Maximum homogeneity
in the structure of a solution

Fulfilled
FS Standards

Compliancy to standards as much
as possible, as long as the benefits
predominate the drawbacks

Functional
FT Traceability

Suitable traceability across all
functional aspects of a solution

Environmental
EH Harmony

Maximum harmony in the
integration of the solution with
its environment

Minimum
MS Special-Cases

Minimum total number of
special-cases in a solution

o I R R

Logical
LS Separation

Separation of concerns between
the components of a solution

Loose
LC Coupling

Loose coupling in communication
and referencing between
solution components

Open
OE Extensibility

Solution components can be
extended by third-parties
at fixed interfaces

Unique
Ul Identification

Unique identification of all
components of a solution

Overall
0s Simplicity

All design aspects of a solution
are as simple as possible and
only as complicated as necessary

LA Least

Astonishment

All design aspects of a solution
are as little astonishing as possible
and only as esoteric as necessary

Operational
oD Delight

The solution provides users
true delight even on long-term
operation

Structural
SM Modularity

Splitting of a solution into
manageable structural
components

Strong
SC Cohesion

Strong relationship between
functionalities within a single
solution component

Closed
cC Changeability
Solution components are

protected against direct change
by third-parties

Uniform
UA Addressing

Uniform addressing of all
components of a solution

EC Encapsulated
Complexity
Complex related aspects of a

solution are encapsulated into
a single responsible component

SD Self

Documentation

All design aspects of a solution
are preferably self-documenting

AA Artistic

Aesthetics

The solution has holistic aesthetics
and artistic love in details

]|
—"

—

panasay s1ybY ||y ‘<wod|leydsjebusy/d

‘AJUO $1X31U0 24N1D3| 3DU3IDS J5INAWOD) Ul UoNINP

W ARCHITECTURE
7 FUNDAMENTALS

Component Design TUT e

Definition of a Component (of a Larger Whole): Definition of a Module (of a System): E
a know-how encapsulating, potentially reusable and substitutable °
unit of hierarchical composition with explicit context dependencies, =
which hides the complexity of its optional behavior and state realization
behind small contractually specified interfaces,

defines its added value in terms of provided and consumed interfaces and

optionally belongs to zero or more categories of similar units.

a know-how encapsulating, potentially reusable and substitutable

source-code unit of hierarchical composition with explicit context dependencies
which hides the complexity of its operation and data implementation

behind small contractually specified Application Programming Interfaces (API),
defines its added value in terms of provided and consumed APIs and

optionally belongs to zero or more categories of similar units.

Example Categories of Components:
- Namespace

- Directory, File

- Configuration, Section, Directive

- Host, Virtual Machine, Container

- Process Group, Process, Thread

- Application, Microservice, Program

- Package, Class, Function

- Database, Schema, Table, Record

- Datamodel, Entity Group, Entity

- User Interface, Dialog, Widget

«component»

Foo O ||log
Odj| O

Category Component

T T T

Provided & Consumed Interfaces

O
|m

Hierarchical Composition

M

B2

White-Box & Black-Box View

Any group of anythmg J

How to find Components (or Modules)?

Domain Concept Separation of Reusability
DCA Abstraction Soc Concerns USE Potential
Decide on components based on their
reusability potential.

Build components for clearly

Model domain concepts as entity
distinct concerns.

components and then group at higher levels.

UC Use-Case

Clustering
Build domain components for each use-case
or each logical use-case cluster.

DD Dorpain-Driven
Design

Model domain“Bounded Contexts”through
DDD and derive components from them.

OOD gleogciegc:.-Oriented

Model Object-Oriented Design entities
(and/or OOP constructs) as components.

SRP Single Respon5|b|I|ty

Principle

Build components for clearly
distinct responsibilities.

CNC Couplingand
Cohesion

Decide on components based on their

loose coupling and strong cohesion.

DEP Dependency
Encapsulation

Decide on components based on their

encapsulation of dependencies.

DCC 2

Master overall complexity by splitting
larger things into smaller things.

cc Cross-Cutting
Concerns

Build common cross-cutting concerns
as cross-cutting components.

Architecture
PAT Pattérns .

Build inner components to comply to outer

structure, slicing and clustering architectures.

2

3
o
T

W ARCHITECTURE
7 FUNDAMENTALS

TECHNISCHE
m UNIVERSITAT
MUNCHEN

Endpoint: Name, Directive, Command, Function, Method, E
o
i
)

Interface Design

well-defined shielding and abstracting boundary of a passive, providing component,
consisting of one or more distinguished, outside-in designed, interaction endpoints,
each accessed and controlled by active, consuming components

through the exchange of input/output information

and operating under a certain syntactical and semantical contract.

Procedure, Address, Port, URL, Dialog, ...
Exchange: Option, Argument, Parameter, Return Value, Result,
Request/Response Message, Error/Exception, Interaction, ...

Contract: Syntax, Pre-Condition, Invariant, Post-Condition,
Side-Effect, Idempotence, Determinism, Functionality, ...

Definition of
an Interface:

Characteristics of Good Interfaces Selected Interface Design Patterns

Types of Software Interfaces

API Application Programming
Interface

Example: foo("bar", 42)
(call and use)

AP Appropriate &
Proportional

Appropriate to consumer requirements,
proportional to provider functionality.

Interf:
IVF \?efsi:rfe& Features

Provide version and feature information for
algebraic comparison and feature detection.

SPI f&l;v:;:c Zrovider

Example: register(”foo”, (x,k) => ...
(extend and implement)

S A Shielding &
Abstracting
Shields from direct access,
abstracts and hides implementation details.

2LF Leaky Two-Layer

Facade

Provide higher-level convenient use-case
and lower-level orthogonal feature interface.

Startup Configuration
SCI InterfaF::e J

Examples: INI, Java Properties, TOML, YAML,
JSON, XML, etc.

I E Inviting &
Expressive

Invites through “outside —in" design,
powerful in expressiveness.

E‘ , Event

Emitter
Emit events to previously registered,
interested consumers.

Batch Processin
BPI Interface J

Examples: Unix at(1), Unix ts(1), GNU Batch,
Spring Batch, Java Batch, SAP LO-BM, etc.

IF Intuitive &
Foolproof

Intuitive to grasp and use,
hard to misuse.

Multi-
Context

Use contexts to distinguish between different
usage scenarios and to carry common info.

Command-Line
CLI Interface

Example: foo -x --bar=baz quux

Orth I &
oc Conc?sgeona

Supports combinatorial use-cases,
causes minimum boilerplate.

Confi -Execut
CEF Ff:,r‘\”gure ecute

Spread use-cases onto a flow of configuration
exchanges and a final executional exchange.

G U I Graphical User
Interface

Examples: Windows/WPF, macOS/Cocoa,

KDE/Qt, GNOME/GTK

TP Tolerant &
Predictable

Tolerant on input,

predictable on output.

Ioc Inversion Of

Control
Invert control on asynchronous operations via
callbacks, promises or async. mechanisms.

Remote Network
RNI Interface

Examples: GraphQL-IO, HTTP/REST, SOAP,
RMI, WebSockets, AMQP, MQTT, etc.

E Extensible &
Compatible

Easy to extend for providers,
backward/forward-compatible for consumers.

HMR Human/Machine
Responses

Support humans and machines in outputs
through both description and parsing-free info.

W ARCHITECTURE
7 FUNDAMENTALS

Component Hierarchy

Micro Architecture
(Programming)

(] 0
£
3 Tier
s)
o}
£ =
Us
<:)
oc¢ Area
B 1
=
(]
| .
= h
- S
§§ Layer
omm C J
=Y
E<
(0]
s
w .
s Slice

Tier
Area Area

Program Program

+
Statement
A
Expression

Module

Function

Statement
Block
Stroke

Statement

Zone:

Structuring Tier or Area
within a System (or within
an outer Zone).

Tier:

Special kind of ranked Zone for
horizontally grouping (logically
or spatially distinct and
network-linked) Programs or
other Tiers and Areas.

Area:

Special kind of unranked Zone
for vertically grouping
(logically or spatially distinct
and network-linked) Programs
or other Tiers and Areas.

System:

One or more network-linked
Programs, forming a solution
as a whole and the primary
unit of thinking at the level of
Macro Architecture.

Program:

Stand-alone, self-contained,
executable piece of software
and primary unit of thinking at
the level of both Macro and
Meso Architecture.

Statement:

Execution of a single action,
specified through one or more
Expressions and zero or more
inner Blocks.

Block:

Sequence of one or more
Strokes within a Function or
an outer Statement and scope
for variables of inner
Statements.

TECHNISCHE
m UNIVERSITAT
MUNCHEN

Unit:

Structuring Layer or Slice
within a Program (or within
an outer Unit).

Layer:

Special kind of ranked Unit for
horizontally grouping (logically
distinct and memory-linked)
Modules or other Slices and
Layers.

Slice:

Special kind of unranked Unit
for vertically grouping
(logically distinct and memory-
linked) Modules or other Slices
and Layers.

Module:

Know-how encapsulating,
potentially reusable group of
Functions and primary unit of
thinking at the level of Meso
Architecture.

Function:

Operation of a Module, with a
well-defined interface, and one
of the two primary units of
thinking at the level of Micro
Architecture.

Stroke:
Logical sequence of
Statements in a Block and one

of the two primary units of
thinking at the level of Micro
Architecture.

Expression:

Simple or complex
representation of a single data
value.

£so [

iydelny

oyneun
€71 UOISIA 1U1U0D) [PN13[[21U]

1'C’| UOISIBA O,

pasuad1] PANGIYOId UoRINPOIdaY pazii

o

1BUISIBAIUN BUISIUYD3)]

'AJUO $1X31U0D 2UN1D3| 3DU3IDS JAINdWoD) Ul uolaNpoIdal Joj (WNL) USYdU
PanIasay sybIy |y ‘<wodleydsjsbuay//d

W ARCHITECTURE

o d L TECHNISCI:IE
o rnoaaas Application Composition TUTL e

a |
W AP W AP W AP
Framework Composable Module

Legend: 4 APl

Domain-Specific

’
’
1
’
1
]
1
]
1
]
’

Executable Executable Executable !
Program Program Program

Component Component Component

c N
o =
23
58
55
IsRe)
Ss
-
=2
S

W AP

Microservice

Component Component Component

Library

01 pasuadI PRUGIYOId UoRdNpoiday pa:

UAdoD ‘(#2-50-20T

s
10 Aq 220 pa1oyiny “(bz-50

Y 10 700 Y

Externalized Shared Externalized
Object Object Object

(1) USUDUNA 1BYSISAIUN BUISIU

>

1y

Applications are composed out of one
or more Executable Programs.

An Executable Program in turn can
leverage zero or more (dedicated)
Externalised Objects and/or (reusable)
Shared Objects. Both Executable
Programs, Externalised Objects and
Shared Objects are composed through
one or more Components.

Components are comprised of the

Component Component Component

Component Component Component

paniasay sBIY [y '<WO|eyds|abuayy/

'AJUO S1X21U0D 21N123] 9dU3IDS 121NdWio)) Ul uoidNpoidal 1% (N
i)

>

c
RS
(7} I v
assets Code, Configuration and Data E v O 8 “LE)
. . ol qJ — w
Component Assets and are of four distinct types: Library, & g £ c g
Framework, Composable and Module, @ O = © = ¢
which are distinguished by their g 1) § S ¢ o o c %
particular combination of = s 0 G = S1El Y] &
. clel2Z1cloelatstsl =l ¢
characterizing aspects. w =2 g T 2z © |6 § o 3
Conﬁguration © (o] = »w £ Q ®© & T =
SO | x| x [J ¢

Meta Information Composable .
Module

<[
B

	Canvas 1
	Canvas 1

