TECHNISCHE
MUNCHEN

Software Engineering

in der industriellen Praxis
(SEIP)

Dr. Ralf S. Engelschall

" ARCHITECTURE
7 FUNDAMENTALS

FL Factual
Locality
Resources are as spatially

and temporarily local-scoped
to solution components as possible

Contextual
CA Adequacy

Neither insufficient nor
exaggerated solutions for
each context

HC Holistic

Consistency

Full consistency across all
aspects of a solution

CR Constructional
Reusability
High reuse of proven

structural components and
partial solutions

FA Functional
Abstraction
Suitable level of abstraction

across all functional aspects
of a solution

cl Communicative
Interoperability
Maximum interoperability in

communication between
solutions

Avoided
LU Redundancy

Minimum total number of
copies of a single resource

Architecture Principles

Exclusive
ES Sovereignty

Exclusive resource sovereignty
by the enclosing component

SP Solution-oriented
Proportionality

Good expected proportionality
in each solution context

Structural
SH Homogeneity

Maximum homogeneity
in the structure of a solution

FS Fulfilled
Standards
Compliancy to standards as much

as possible, as long as the benefits
predominate the drawbacks

Functional
FT Traceability

Suitable traceability across all
functional aspects of a solution

EH Environmental
Harmony
Maximum harmony in the

integration of the solution with
its environment

Minimum
Ms Special-Cases

Minimum total number of
special-cases in a solution

Logical
LS Separation

Separation of concerns between
the components of a solution

Loose
LC Coupling

Loose coupling in communication

and referencing between
solution components

Open
OE Extensibility

Solution components can be
extended by third-parties
at fixed interfaces

Unique
ul Identification

Unique identification of all
components of a solution

Overall
0s Simplicity

All design aspects of a solution

are as simple as possible and
only as complicated as necessary

LA Least

Astonishment

All design aspects of a solution
are as little astonishing as possible
and only as esoteric as necessary

Operational
oD Delight

The solution provides users
true delight even on long-term
operation

mm

Structural
SM Modularity

Splitting of a solution into
manageable structural
components

Strong
sC Cohesion

Strong relationship between
functionalities within a single
solution component

Closed
cC Changeability

Solution components are
protected against direct change
by third-parties

Uniform
UA Addressing

Uniform addressing of all
components of a solution

Encapsulated
EC Complexity

Complex related aspects of a
solution are encapsulated into
a single responsible component

SD Self

Documentation

All design aspects of a solution
are preferably self-documenting

AA Artistic

Aesthetics

The solution has holistic aesthetics
and artistic love in details

TECHNISCHE
UNIVERSITAT
MUNCHEN

Note: The principle Overall Simplicity is one of the
hardest to implement because nothing in IT is really
easy. Everything only looks simple as long as one does
not have enough understanding about it. After that,
one first has to make it “simple” painstakingly. That's
the art of architecture: simplify difficult things! If
something cannot be simplified further and still has a
certain complexity, following the principle
Encapsulated Complexity, one at least can try to
shadow it.

In IT Architecture, one follows Architecture Principles,
which summarize basic principles and procedures. One
knows 28 principles that can be grouped into 14 pairs
since always two principles are very close regarding the
content. The architect should follow the principles in
general, but he may violate them as long as he has a
good reason for it. The best reason would be a
particular project-specific requirement.

Note: The principle Logical Separation (aka Separation
of Concern) is one of the most important, since from it
several other principles almost automatically follow,
including, e.g., Structural Modularity.

Questions

o . @© List at least 4 essential Architecture Principles!
Note: The principles Loose Coupling and Strong

Cohesion are known in the literature as the combined
principle “Loose Coupling, Strong Cohesion.” The
principles Open Extensibility and Closed
Changeability are known in the literature as the
combined principle “Open-Close.”

7 ARCHITECTURE

& Fiouiems Component Design UMz

Definition of a Component (of a Larger Whole): Definition of a Module (of a System): E
a know-how encapsulating, potentially reusable and substitutable a know-how encapsulating, potentially reusable and substitutable °
unit of hierarchical composition with explicit context dependencies, source-code unit of hierarchical composition with explicit context dependencies &
which hides the complexity of its optional behavior and state realization which hides the complexity of its operation and data implementation
behind small contractually specified interfaces, behind small contractually specified Application Programming Interfaces (API),
defines its added value in terms of provided and consumed interfaces and defines its added value in terms of provided and consumed APIs and
optionally belongs to zero or more categories of similar units. optionally belongs to zero or more categories of similar units.
le Categories of Comp
- Namespace
- Directory, File
- Configuration, Section, Directive
- Host, Virtual Machine, Container + E2 BD DB
- Process Group, Process, Thread Category Component
- Application, Microservice, Program
- Package, Class, Function (i Bl Gt meadliisizss]
oo

Hierarchical Composition

- Database, Schema, Table, Record
- Datamodel, Entity Group, Entity ! | ! | | |
- User Interface, Dialog, Widget
Behavior Operation
Any group ofanythmg’

How to find Components (or Modules)?
Domain Concept Separation of Reusability
DCA Abstraction Soc Concerns USE Potential

Model domain concepts as entity Build components for clearly Decide on components based on their
components and then group at higher levels. distinct concerns. reusability potential.

Use-Case Single Respons|b|||ty Divide & Conquer
Ucc Clustering S RP Principle Dcc Complexity
Build domain components for each use-case Build components for clearly Master overall complexity by splitting
or each logical use-case cluster. distinct responsibilities. larger things into smaller things.

Domain-Driven Coupling and Cross-Cutting
DD Design CN c Cohesion ccc Concerns
Model domain“Bounded Contexts”through Decide on components based on their Build common cross-cutting concerns
DDD and derive components from them. loose coupling and strong cohesion. as cross-cutting components.

Object-Oriented Dependency Architecture
OOD Design DEP Encapsulation PAT Patterns
Model Object-Oriented Design entities Decide on components based on their Build inner components to comply to outer
(and/or OOP constructs) as components. encapsulation of dependencies. structure, slicing and clustering architectures.

Software Architecture is all about Components and Components can be found in many different ways.

Interfaces. Therefore, Component Design is a central Most of them are directly derived from existing

task of the architect. methods, principles, or patterns. The two most
important ways for a component cut in practice are:

A component encapsulates a certain know-how, is Separation of Concerns (which unique concern or task

potentially reusable and replaceable. A component has the component?) and Single Responsibility

has a behaviour and a state and hides the internal Principle (what is the unique responsibility of the

complexity of both behind “small” contractual component?).

interfaces. It provides its added value through the
difference between provided and consumed interfaces. Questions
It can be considered as a Whitebox or as a Blackbox,

depending on whether the internal details can be @© List at least 7 properties/aspects which a
viewed from outside or not. Components are arranged Component has!

hierarchically, may belong to specific categories and

have explicit dependencies among each other. © What are the two most important ways to find a

component cut in practice?
A distinction is made between the more general

concept of Component (“any group of anything”) and
the more specific concept of the (via Source code
defined) Module.

" ARCHITECTURE
7 FUNDAMENTALS

5
5
o
[=X]

Types of Software Interfaces

API Application Programming
Interface

Example: foo("bar", 42)

(calland use)

SPI Service Provider
Interface

Example: register(”foo”, (x,k) = ...

(extend and implement)

SCI Startup Configuration
Interface

Examples: INI, Java Properties, TOML, YAML,

JSON, XML, etc.

BPI Batch Processing
Interface

Examples: Unix at(1), Unix ts(1), GNU Batch,

Spring Batch, Java Batch, SAP LO-BM, etc.

CLI Command-Line
Interface

Example: foo -x --bar=baz quux

Graphical U
GUI iy

Examples: Windows/WPF, macOS/Cocoa,
KDE/Qt, GNOME/GTK

Remote Network
RNI Interface

Examples: GraphQL-O, HTTP/REST, SOAR,
RMI, WebSockets, AMQP, MQTT, etc.

Interface Design

well-defined shielding and abstracting boundary of a passive, providing component,
consisting of one or more distinguished, outside-in designed, interaction endpoints,
each accessed and controlled by active, consuming components

through the exchange of input/output information

and operating under a certain syntactical and semantical contract.

Characteristics of Good Interfaces

AP Appropriate &
Proportional

Appropriate to consumer requirements,
proportional to provider functionality.

S A Shielding &
Abstracting

Shields from direct access,

abstracts and hides implementation details.

IE Inviting &
Expressive

Invites through “outside — in"design,

powerful in expressiveness.

“: Intuitive &
Foolproof

Intuitive to grasp and use,

hard to misuse.

oc Orthogonal &
Concise

Supports combinatorial use-cases,
causes minimum boilerplate.

Tolerant &
TP Predictable

Tolerant on input,
predictable on output.

Ec Extensible &
Compatible

Easy to extend for providers,

backward/forward-compatible for consumers.

TECHNISCHE
UNIVERSITAT
MUNCHEN

Endpoint: Name, Directive, Command, Function, Method,
Procedure, Address, Port, URL, Dialog, ...
Option, Result,
M i tion,

Contract: Syntax, Pre-Condition, Invariant, Post-Condition,
Side-Effect, De linism, Functionalit

o
&
[N

Selected Interface Design Patterns

Interface
IVF Version & Features

Provide version and feature information for
algebraic comparison and feature detection.

2LF Leaky Two-Layer

Facade

Provide higher-level convenient use-case
and lower-level orthogonal feature interface.

Ev Event

Emitter
Emit events to previously registered,
interested consumers.

CTX Mt

Context
Use contexts to distinguish between different
usage scenarios and to carry common info.

Configure-Execute
CEF o @

Spread use-cases onto a flow of configuration
exchanges and a final executional exchange.

I ion Of
10C i

Invert control on asynchronous operations via
callbacks, promises or async. mechanisms.

Human/Machine
HMR Responses

Support humans and machines in outputs
through both description and parsing-free info.

An interface is a well-defined, shielding, abstracting
boundary of a passive providing component, which
consists of one or more clearly distinguishable
interaction endpoints.

There are numerous software patterns for interfaces.
An interesting pattern is the Leaky Two-Layer Facade,
in which a library has two interfaces: an upper,
convenient, and Use-Case-related interface and a lower,
orthogonal Feature-related interface. The trick is that
the upper interface is implemented by the lower
interface only and that the lower interface “shines
through” (“leaky” or Open Layering).

At each interaction endpoint, an active, consuming
component is accessed through the exchange of
input/output information and is operated under a
specific syntactical and semantical contract.
Questions
There are numerous kinds of interfaces, all of which
meet this definition. In addition, “good” interfaces have [2)
specific Properties/Characteristics. The four of the best
properties are: Proportional (the interface is smaller
and in size proportional to the functionality behind it), © List at least 4 properties/characteristics of good
Expressive (the interface provides a powerful Interfaces!

programming model), Orthogonal (the interface allows
combinatorial Use-Cases), and Concise (the interface
generates little “Boilerplate Code” during use).

List at least 8 properties/aspects which define an
Interface!

W ARCHITECTURE
7 FUNDAMENTALS

(System Architecture)

Macro Architecture

Module

Meso Architecture
(Software Architecture)

Module

j Program

Function

Stroke
Statement

Function

[J
1
S
Yo
[TR=
B2
<c
]
=5
<3
=
o
=

Statement
Block
Stroke

Area Area

Program Program

A Component is “any group of anything” in Software
Architecture. Nevertheless, there are prominent
component categories that form an particular,
omnipresent Component Hierarchy in Software
Engineering. This consists of the three levels Macro
Architecture (aka System Architecture), Meso
Architecture (aka Software Architecture) and Micro
Architecture (aka Programming).

In the Macro Architecture level, one has to deal with
Systems (aka Applications) which consist of
hierarchically arranged infrastructural Zones, which can
be either (horizontal) Tiers or (vertical) Areas. The
Zones themselves consist of Programs.

These Programs, at the level of the Meso Architecture,
consist of hierarchically arranged Units, which can be
either (horizontal) Layers or (vertical) Slices. The Units
themselves consist of Modules.

Component Hierarchy

Zone:

Structuring Tier or Area
within a System (or within
an outer Zone).

Tier:

Special kind of ranked Zone for
horizontally grouping (logically
or spatially distinct and
network-linked) Programs or
other Tiers and Areas.

Area:

Special kind of unranked Zone
for vertically grouping
(logically or spatially distinct
and network-linked) Programs
or other Tiers and Areas.

System:

One or more network-linked
Programs, forming a solution
as a whole and the primary
unit of thinking at the level of
Macro Architecture.

Program:

Stand-alone, self-contained,
executable piece of software
and primary unit of thinking at
the level of both Macro and
Meso Architecture.

Statement:

Execution of a single action,
specified through one or more
Expressions and zero or more
inner Blocks.

Block:

Sequence of one or more
Strokes within a Function or
an outer Statement and scope
for variables of inner
Statements.

TECHNISCHE
UNIVERSITAT
MUNCHEN

Unit:

Structuring Layer or Slice
within a Program (or within
an outer Unit).

Layer:

Special kind of ranked Unit for
horizontally grouping (logically
distinct and memory-linked)
Modules or other Slices and
Layers.

Slice:

Special kind of unranked Unit
for vertically grouping
(logically distinct and memory-
linked) Modules or other Slices
and Layers.

Module:

Know-how encapsulating,
potentially reusable group of
Functions and primary unit of
thinking at the level of Meso
Architecture.

Function:

Operation of a Module, with a
well-defined interface, and one
of the two primary units of
thinking at the level of Micro
Architecture.

Stroke:
Logical sequence of
Statements in a Block and one

of the two primary units of
thinking at the level of Micro
Architecture.

Expression:

Simple or complex
representation of a single data
value.

The Modules, at the level of the Micro Architecture,
consist of Functions and these consist of hierarchically
arranged (lexical) Blocks, which in turn consist of
Strokes (aka “Thoughts”), which in turn consist of
Statements and these at the end consist of individual

Expressions.

The five Primary Units of Thinking are Systems,
Programs, Modules, Functions and Strokes.

Questions

@® Which three component categories are known at
the level of Macro Architecture (aka System
Architecture)?

© Which three component categories are known at
the level of Meso Architecture (aka Software
Architecure)?

© Which five component categories are known at
the level of Micro Architecture (aka
Programming)?

eso 17

W ARCHITECTURE
f FUNDAMENTALS

Application Composition TUT 2

Application Structure /

Component Types

-
w

Application

Executable
Program

Executable
Program

Executable
Program
Component

Component Component

Microservice

Component Component Component

W AP
Composable Module

W API

Legend:

Externalized
Object

Shared
Object

Externalized
Object

Domain-Specific

Applications are composed out of one
or more Executable Programs.

An Executable Program in turn can
leverage zero or more (dedicated)
Externalised Objects and/or (reusable)
Shared Objects. Both Executable
Programs, Externalised Objects and
Shared Objects are composed through

Component Component Component

Component Component Component

one or more Components. S
Components are comprised of the) B () 8
assets Code, Configuration and Data 21 o S 3 % z
isti Ll g T @ 3
Com ponent Assets and are of four distinct types: Library, = = 2 < 3 2
Framework, Composable and Modufe,) = @ - 9
which are distinguished by their g L § g) § = %
particular combination of =21 212 ‘a E g _E E <
characterizing aspects. Sl =l o 1= g 8 5 Y &6 3
5|5 ¢ ¥ Ellals 8 5|2
Lary
. composabl
Meta Information P

Applications are composed out of one or more
Executable Programs. An Executable Program in turn
can leverage zero or more (dedicated) Externalised

There are four distinct types of Components: Library,
Framework, Composable and Module. They can be
distinguished by their particular combination of

Objects and/or (reusable) Shared Objects. Both
Executable Programs, Externalised Objects and Shared
Objects are composed through one or more
Components. In a Microservice Architecture, the
Executable Programs are called Microservices. In a
Plugin Architecture, the Externalised Objects are called
Plugins.

characterizing aspects. Most prominently, whether they
provide an Application Programming Interface (API) to
the consumer of the Component and/or whether they
require the consumer of the Component to fulfill some
sort of Service Provider Interface (SPI).

Questions

© What is the main difference between a Library and
a Framework?

	Questions
	Questions
	Questions
	Questions
	Questions

