
Dr. Ralf S. Engelschall

Software Engineering
in der industriellen Praxis

(SEIP)



In IT Architecture, one follows Architecture Principles,
which summarize basic principles and procedures. One
knows 28 principles that can be grouped into 14 pairs
since always two principles are very close regarding the
content. The architect should follow the principles in
general, but he may violate them as long as he has a
good reason for it. The best reason would be a
particular project-specific requirement.

Note: The principle Logical Separation (aka Separation
of Concern) is one of the most important, since from it
several other principles almost automatically follow,
including, e.g., Structural Modularity.

Note: The principles Loose Coupling and Strong
Cohesion are known in the literature as the combined
principle “Loose Coupling, Strong Cohesion.” The
principles Open Extensibility and Closed
Changeability are known in the literature as the
combined principle “Open-Close.”

Note: The principle Overall Simplicity is one of the
hardest to implement because nothing in IT is really
easy. Everything only looks simple as long as one does
not have enough understanding about it. After that,
one first has to make it “simple” painstakingly. That’s
the art of architecture: simplify difficult things! If
something cannot be simplified further and still has a
certain complexity, following the principle
Encapsulated Complexity, one at least can try to
shadow it.

Questions

List at least 4 essential Architecture Principles!



Software Architecture is all about Components and
Interfaces. Therefore, Component Design is a central
task of the architect.

A component encapsulates a certain know-how, is
potentially reusable and replaceable. A component
has a behaviour and a state and hides the internal
complexity of both behind “small” contractual
interfaces. It provides its added value through the
difference between provided and consumed interfaces.
It can be considered as a Whitebox or as a Blackbox,
depending on whether the internal details can be
viewed from outside or not. Components are arranged
hierarchically, may belong to specific categories and
have explicit dependencies among each other.

A distinction is made between the more general
concept of Component (“any group of anything”) and
the more specific concept of the (via Source code
defined) Module.

Components can be found in many different ways.
Most of them are directly derived from existing
methods, principles, or patterns. The two most
important ways for a component cut in practice are:
Separation of Concerns (which unique concern or task
has the component?) and Single Responsibility
Principle (what is the unique responsibility of the
component?).

Questions

List at least 7 properties/aspects which a
Component has!



What are the two most important ways to find a
component cut in practice?





An interface is a well-defined, shielding, abstracting
boundary of a passive providing component, which
consists of one or more clearly distinguishable
interaction endpoints.

At each interaction endpoint, an active, consuming
component is accessed through the exchange of
input/output information and is operated under a
specific syntactical and semantical contract.

There are numerous kinds of interfaces, all of which
meet this definition. In addition, “good” interfaces have
specific Properties/Characteristics. The four of the best
properties are: Proportional (the interface is smaller
and in size proportional to the functionality behind it),
Expressive (the interface provides a powerful
programming model), Orthogonal (the interface allows
combinatorial Use-Cases), and Concise (the interface
generates little “Boilerplate Code” during use).

There are numerous software patterns for interfaces.
An interesting pattern is the Leaky Two-Layer Facade,
in which a library has two interfaces: an upper,
convenient, and Use-Case-related interface and a lower,
orthogonal Feature-related interface. The trick is that
the upper interface is implemented by the lower
interface only and that the lower interface “shines
through” (“leaky” or Open Layering).

Questions

List at least 8 properties/aspects which define an
Interface!



List at least 4 properties/characteristics of good
Interfaces!





A Component is “any group of anything” in Software
Architecture. Nevertheless, there are prominent
component categories that form an particular,
omnipresent Component Hierarchy in Software
Engineering. This consists of the three levels Macro
Architecture (aka System Architecture), Meso
Architecture (aka Software Architecture) and Micro
Architecture (aka Programming).

In the Macro Architecture level, one has to deal with
Systems (aka Applications) which consist of
hierarchically arranged infrastructural Zones, which can
be either (horizontal) Tiers or (vertical) Areas. The
Zones themselves consist of Programs.

These Programs, at the level of the Meso Architecture,
consist of hierarchically arranged Units, which can be
either (horizontal) Layers or (vertical) Slices. The Units
themselves consist of Modules.

The Modules, at the level of the Micro Architecture,
consist of Functions and these consist of hierarchically
arranged (lexical) Blocks, which in turn consist of
Strokes (aka “Thoughts”), which in turn consist of
Statements and these at the end consist of individual
Expressions.

The five Primary Units of Thinking are Systems,
Programs, Modules, Functions and Strokes.

Questions

Which three component categories are known at
the level of Macro Architecture (aka System
Architecture)?



Which three component categories are known at
the level of Meso Architecture (aka Software
Architecure)?



Which five component categories are known at
the level of Micro Architecture (aka
Programming)?





Applications are composed out of one or more
Executable Programs. An Executable Program in turn
can leverage zero or more (dedicated) Externalised
Objects and/or (reusable) Shared Objects. Both
Executable Programs, Externalised Objects and Shared
Objects are composed through one or more
Components. In a Microservice Architecture, the
Executable Programs are called Microservices. In a
Plugin Architecture, the Externalised Objects are called
Plugins.

There are four distinct types of Components: Library,
Framework, Composable and Module. They can be
distinguished by their particular combination of
characterizing aspects. Most prominently, whether they
provide an Application Programming Interface (API) to
the consumer of the Component and/or whether they
require the consumer of the Component to fulfill some
sort of Service Provider Interface (SPI).

Questions

What is the main difference between a Library and
a Framework?




	Questions
	Questions
	Questions
	Questions
	Questions

