
Software Engineering in der industriellen Praxis (SEIP)

Thank you for �ying Industry Airlines.
Lecture End

To be continued.
Lecture Gap

Let’s have a meal!
LUNCH

Let’s breathe deeply!
BREAK

Fasten your seatbelts, please.
Lecture Start

Dr. Ralf S. Engelschall

Pattern: unique, catchy, and associative Name and
concise, precise, and normative Description of a
contextual, regularly occurring, and practically relevant Problem and a
general, highly reusable, and best practice Solution for it.

Pattern
De!nition

unique

practically relevant

regularly occurring

contextual

catchy

associative

concise

precise

normative

highly reusable

general

best practice

Pattern

Name

Description

Problem

Solution

has to be unambiguously distinguished

has to be recognized and memorized

has to be intuitively associated to the solution

has to be reasonably remembered

has to be clear and unambiguous

has to be foundational and stringent in expressiveness

has to be described in a given context

has to be motivated by enough situations

has to be motivated by enough practice

has to be general enough to be su"ciently reusable

has to be applicable also in variants of the context

has to be considered a best or at least good practice

Pattern Structure Pattern Rationale

!

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.0 (2022-11-05), Authored 2022 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.0 (2022-11-05), Copyright ©

 2022 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
06.1

Architecture Patterns

LayerHorizontally split code or data into
two or more logically, optionally
also spatially, clearly distinct,
isolating, named, and ranked Layers.

Layering
Principle

A Layer is not allowed to have relationships to or knowledge about any
upper Layers. Additionally, for Closed Layering, each Layer is allowed to
have relationships to and knowledge about the directly lower Layer only.
In contrast to Open Layering or Leaky Abstraction, where each Layer is
allowed to have relationships to and knowledge about any lower Layer.

Split related code or data of a Program into
two or more logically distinct domain- or
technology-induced Layers.

Rationale: Separation of Concern, Single
Responsibility Principle, Mastering Complexity,
Change Isolation, Functional Abstraction.

LayerLR

Program

Layer

Layer

Layer

Layer

Layer

Split related code or data of a System into
two, three or more logically and spatially
distinct, network-connected, domain- or
technology-induced Tiers.

Rationale: Separation of Concern, Single
Responsibility Principle, Mastering Complexity,
Change Isolation, Functional Abstraction,
Deployment Partitioning.

TierTR

System

Tier

Tier

Tier

Splice a domain-speci!c Facade Layer into
two Layers of two or more Modules. The extra
Facade Layer acts as a broker between the
Modules.

Rationale: Information Hiding, Cross-Cutting
Concern Centralization, Functionality
Orchestration, Authorization, Validation,
Conversion.

FacadeFD

Program Facade

Module Module Module

Split the code of a Program into exactly two
logical Layers: a user-facing Front End and a
data-facing Back End.

Rationale: Separation of Concern, Single
Responsibility Principle, Mastering Complexity,
Change Isolation, Functional Abstraction,
Organisational Alignment.

Front End / Back EndFB

Front End

Program

Back End

Split the code of a System into two spatially
distinct, network-connected Layers, each
forming a stand-alone Program: a user-facing
and multi-instantiated (Rich) Client and a
data-facing (and logically) single-instantiated
(Thin) Server. Both contain a Front/Back End.

Rationale: Multi-User, User Computing
Resource Leverage, Distributed Computing.

Client / ServerCS

Client

System

Server

Splice a domain-unspeci!c Middleware Layer
into a Client/Server communication. The
extra Layer is a stand-alone Program Tier and
acts as a broker between Client and Server.

Rationale: Communication Peer Discovery
Simpli!cation, Transport Protocol Conversions,
Network Topology Flexibility.

MiddlewareMW

Client

System Middleware

Client Client

Server Server Server

Module Module Module

(Patterns)

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.5 (2020-11-28), Authored 2018-2020 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.4 (2020-11-28), Copyright ©

 2018-2020 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
06.2

Layer Architectures

Split related code or data (usually across a
single Layer) into two or more logically
distinct domain- or technology-induced
Modules.

Rationale: Separation of Concern, Single
Responsibility Principle, Mastering Complexity.

Concerned ModuleMOD

Factor out common or cross concern code or
data of a Program (across all Layers) into a
single spatially distinct, separate slice.

Rationale: Lack of Redundancy, Single
Point of Truth, Reusability.

Common SliceCOM

Split the code and data of a Program (across
all Layers) into two or more purely logical
slices, one for each distinct, domain-speci!c
Use-Case.

Rationale: Comprehensibility, Domain
Alignment, Mastering Complexity.

Use-Case SliceUCS

Split code and data of a Program (across all
Layers) or a Tier into exactly two slices to
segregate operations that read data (queries)
from the operations that update data
(commands).

Rationale: Separated Scalability,
Separated Data Access Patterns,
Event Sourcing Approach.

Command-Query Responsibility SegregationCQRS

Split code and data of a Tier (across all Layers)
into two or more distinct, loosely-coupled,
domain-enclosed, functional services, each
forming a stand-alone Program.

Rationale: Heterogeneity, Resilience,
(Scalability), (Easy Deployment),
(Organizational Alignment), (Composability),
(Reusability), Replaceability.

MicroserviceMS

Self-Contained SystemSCS

MOD MOD

MOD MOD MOD

COM
Layer

Program

Layer

Layer

Layer
MS

Tier

MS MS

Command
Slice

Program or Tier

Query
Slice

UCS

Program

UCS UCS

Slice Slice Slice

Vertically split code or data into two
or more logically, optionally also
spatially, clearly distinct, named,
and unranked slices.

Slicing
Principle

The particular slicing should minimize the total
amount of individual relationships between the
resulting slices. Per type of relationship, there
should be no cycle in the transitive relationships.

SCS

System

SCS SCS

Split code and data of a System (across all Layers
and Tiers) into two or more distinct, loosely-
coupled, domain-enclosed, functional systems,
each forming a stand-alone sub-System.

Rationale: Mastering Complexity, Heterogeneity,
Resilience, Scalability, Easy Deployment,
Organizational Alignment, Reusability,
Replaceability.

(Patterns)

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.4 (2020-09-09), Authored 2018-2020 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.2 (2019-09-30), Copyright ©

 2018-2019 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
06.3

Slice Architectures

Pipes & Filters Ports & Adapters (Hexagonal) Hub & Spoke

Pass data through a directed graph of Components
and connecting Pipes. The components can be
Sources, where data is produced, Filters, where data
is processed, or Sinks, where data is captured.
Source and Filter components can have one or more
output Pipes. Filter and Sink components can have
one or more input Pipes. Components are
independent processing units and operate fully
asynchronously.

Examples: Unix commands with stdin/stdout/stderr
and the Unix shell connecting them with pipes;
Apache Spark or Apache Camel data stream
processing pipelines.

Perform communication in a Hub & Spoke fashion by
structuring a solution into the three “Layers”
Domain, Application and Framework and use the
Framework layer to connect with the outside
through Ports (general Interfaces) and Adapters
(particular Implementations). Often some Ports &
Adapters are user-facing sources and some are data-
facing sinks, although the motivation for the Ports &
Adapters architecture is to remove this distinction
between user and data sides of a solution.

Examples: Message Queue, Enterprise Service Bus or
Media Streaming Service internal realization.

Perform communication (the Spoke) between
multiple Components through a central Hub
Component. Instead of having to communicate with
N x (N-1) / 2 bi-directional interconnects between N
Components, use the intermediate Hub to
communicate with just N interconnects only.
Sometimes one distinguishes between K (0 < K < N)
source and N - K target Components and then K x (N
- K) uni-directional interconnects are reduced to just
N interconnects, too.

Examples: Message Queue, Enterprise Service Bus,
Module Group Facade, GNU Compiler Collection,
ImageMagick, etc.

Source Source

Filter

Source

Com-
ponent

Com-
ponent

Com-
ponent

Com-
ponent

Com-
ponent

Com-
ponent

Hub

Sink

Filter

Filter

Filter
Port

Port

Port

Port

Po
rt

Po
rtAd

ap
ter

Ad
ap

ter
Adapter

Adapter

Adapter

Adapter

Domain

Application

Framework

(Patterns)

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.2 (2018-10-29), Authored 2018 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.3 (2018-11-24), Copyright ©

 2018 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
07.1

Flow Architectures

Process/Thread Pool

Instead of creating a Process/Thread for handling
each incoming I/O request, pick a pre-created
Process/Thread out of a resource Pool in order to
increase performance and decouple I/O tra!c
(leading to threads of execution) from the actual
computing resource usage and utilization.

The Process/Thread Pool usually has a lower and
upper bound of processes/threads. The lower bound
keeps the system “hot” between I/O requests. The
upper bound limits the computing resource usage
and avoids over-utilization.

Examples: Apache HTTP Daemon

Container, Process, Thread Master-Worker

The Operating System manages and orchestrates the
run-time execution of applications in Containers,
programs in Processes and control "ows in Threads.

Containers are the ultimate enclosures, separating
and controlling both the computing resources
processor, memory, storage and network. Processes
are the primary enclosures, still separating and
controlling at least the computing resources
processor and memory. Threads are the light-weight
enclosures, just separating and controlling the
computing resource processor. Containers can
contain one or more Processes, and Processes can
contain one or more Threads.

Examples: Docker Container,
Unix Processes, POSIX Threads.

The system has a single permanent Master
container/process/thread and a Pool of many
ephemeral Worker containers/processes/threads.
The Master starts, restarts, pauses, resumes and
stops the Workers and usually also delegates
incoming I/O requests to them. The Workers process
the I/O requests and deliver the responses.

Starting the Master usually implicitly starts an initial
set of Workers (the initial Pool), stopping the Master
implicitly stops all still pending Workers.

Examples: Unix init(8) daemon, Apache HTTP Daemon,
SupervisorD, Node.js Cluster module

Container

Worker

Master

Worker Worker
Process/
Thread

Process/
Thread

Process/
Thread

Process/
Thread

Process/
ThreadProcess Process

Th
re

ad

Th
re

ad

Th
re

ad

Th
re

ad

(Patterns)

po
ol

ed
us

ed

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.2 (2019-09-21), Authored 2018-2019 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.1 (2018-11-24), Copyright ©

 2018 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
07.2

Process Architectures

Cluster
Cluster

(secondary partition)

Master-Slave (Static Replication) Leader-Follower (Dynamic Replication) Master-Master (Synchronization)

Cluster of a single Master and multiple Slave nodes,
where data is continuously copied from the Master
to the Slave nodes in order to support high-
availability (where a Slave will take over the Master
role) in case of a Master outage and increased read
performance (where regular read requests are also
served by the Slaves).

In this static replication scenario the Master is usually
assigned statically and in case of outages has to be
reassigned usually semi-manually. Especially, the full
reestablishment of the original Master assignment
after a Master recovery usually is a manual process.

Examples: OpenLDAP Replication,
PostgreSQL WAL Replication.

Cluster of a single Leader and multiple Follower
nodes, where data is written on the current Leader
node and data read on both the current Leader and
all Follower nodes. For writing data to the cluster, the
Leader node performs a consensus protocol (e.g.
RAFT, Paxos or at least Two-Phase-Commit) with the
Followers and this way automatically and
consistently replicates the data to the Followers.

In this dynamic replication scenario the Leader is
usually automatically assigned by the cluster nodes
through an election protocol and in case of outages
is automatically re-assigned. There is usually no re-
establishment of the original Leader assignment.

Examples: Apache Zookeeper, Consul, EtcD,
CockroachDB, In!uxDB.

Cluster of multiple Master nodes, where data is read
and written on any Master node concurrently. The
Master nodes either use Strict Consistency through
writing to a mutual-exclusion-locked shared storage
concurrently or use Eventual Consistency in a Shared
Nothing storage scenario where they continuously
synchronize their local data state to all other nodes
with the help of a synchronization protocol.

The synchronization protocol usually is based on
either Con!ict-Free Replicated Data Types (CRDT) or
at least Operational Transformation (OT). In any
scenario, data update con!icts are explicitly avoided.

Examples: ORACLE RAC, MySQL/MariaDB Galera
Cluster, Riak, Automerge/Hypermerge.

Cluster
(primary partition)

SlaveMaster Slave

Client

Cluster

FollowerLeader Follower

Client

Replication Protocol Consensus Protocol

MasterMaster

Client

Synchronization Protocol

Master

(Patterns)

Write Operation
Read Operation

Load Balancer Load BalancerLoad Balancer

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.5 (2021-09-08), Authored 2018-2021 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.4 (2021-09-08), Copyright ©

 2018-2021 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
07.3

Cluster Architectures

Communicate between two network nodes
in a point-to-point fashion, usually through a
direct link.

Rationale: simple communication where
both nodes know about each other and can
directly reach each other.

Point-to-PointPTP

Communicate between two network nodes
in a point-to-point fashion, but by routing
the network packets over intermediate
forwarding nodes (routers).

Rationale: simple communication where
both nodes know about each other, but
cannot directly reach each other.

RoutingRTG

Communicate between multiple network
nodes (usually all in the client and server role
at the same time) without involving a central
hub node (in the role of a server) — except
for the initial network entry discovery.

Rationale: communication without central
control (although a seed peer is required).

Peer-to-PeerP2P

Communicate between multiple nodes in the
client role (making requests, and usually with
ephemeral addresses) and multiple nodes in
the server role (serving responses, and
usually with !xed addresses).

Rationale: communication with central
orchestration, control and data storage.

Client/ServerC/S

Communicate between multiple nodes with
the help of a central packet forwarding hub
node in a star network topology.

Rationale: decouple communication nodes:
instead of Point-to-Point (PTP)
communications between all nodes, there
are just PTP communications with the hub.

Bus/Broker/RelayBUS

Communicate between two nodes by using
an intermediate forwarding proxy node in
front of the source node.

Rationale: bridge network topology
constraints (segmented networks); caching at
source side; auditing of communication.

(Forward) ProxyFPR

Communicate between a source and a target
node by using a masquerading proxy node
directly in front of the target node.

Rationale: load balancing for multiple target
nodes; caching at target side; auditing of
communication; security shielding of target
nodes; protocol conversions.

Reverse ProxyRPR

Communicate between nodes in a logical
star network topology on top of an arbitrary
physical routed network topology.

Rationale: secure private network overlaying
an unsecure public network; simplify
network topology.

Virtual (Private) NetworkVPN

(Patterns)

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.7 (2022-10-09), Authored 2018-2022 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.4 (2019-10-31) Copyright ©

 2018-2019 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
08.1

Networking Architectures

A
F

08.1Communicate messages from one source to
exactly one destination node. The
destination node is explicitly and individually
addressed.

Rationale: private communication between
exactly two nodes which both know each
other beforehand.

Unicast (one-to-one)UCT

Communicate messages from one source to
many destination nodes. The destination
nodes usually form a group and are usually
not individually addressed.

Rationale: node communication where
destination nodes dynamically change or
where total tra!c should be reduced.

Multicast (one-to-many)MCT

Communicate messages from one source to
all available destination nodes. The
destination nodes usually are implicitly
de"ned by the extend of the local
communication network segment.

Rationale: spreading out messages to all
available nodes for potential responses.

Broadcast (one-to-all)BCT

Communicate messages from one source to
one of many destination nodes. The picked
destination node usually is the network-
topology-wise “nearest” or least utilized node
in a group of nodes.

Rationale: Unicast, optimized for network
failover scenarios, load balancing and CDNs.

Anycast (one-to-any)ACT

Communicate messages as an unordered set
of single packets, usually without any
network congestion control, retries or other
delivery guarantees.

Rationale: simple low-overhead
communication without prior
communication establishment (handshake).

Datagram (Single Packet)DGR

Communicate messages as an ordered
sequence (stream) of packets, usually with
network congestion control, retries and
delivery guarantees (at-most-once, exactly-
once, at-least-once).

Rationale: reliable communication between
nodes.

Stream (Sequence of Packets)STR

Communicate by performing a request (from
the client node) and pulling a corresponding
response (from the server node).

Rationale: Remote Procedure Call (RPC) like
Unicast or Anycast communication.

Pull (Request/Response, RPC)PLL

Communicate by “subscribing” to “channels”
of messages (on one or more receiver nodes
or on an intermediate hub) once and then
publishing events to those “channels”
(on the sender node) multiple times.

Rationale: event-based Multicast or
Broadcast communication.

Push (Publish/Subscribe, Events)PSH

(Patterns)

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.3 (2020-09-26), Authored 2018-2020 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.1 (2018-11-24), Copyright ©

 2018 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
08.2

Communication Architectures

	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1

