TECHNISCHE
TUTT voveesrs
MUNCHEN

Software Engineering in der industriellen Praxis (SEIP)

Dr. Ralf S. Engelschall

e Fhomars Architecture Patterns TUTI 2

Pattern: unique, catchy, and associative Name and

Pattern concise, precise, and normative Description of a

Definition contextual, regularly occurring, and practically relevant Problem and a
general, highly reusable, and best practice Solution for it.

Pattern Structure

Pattern

Pattern Rationale

UOISIZA {UONE.
UOISI9A U

unique has to be unambiguously distinguished

0} pasuadr] PAIAIYOIY uonanpoiday pa:

d

=3
<
Ia)
o

S
2
>
s
5
<)
3
a
I~}
S
¥
N}
o
2
=
o
EN
«

NEIE catchy has to be recognized and memorized

associative has to be intuitively associated to the solution

2
A

>
=2

concise

(WNL) USYDUNI 1BISISAIUN 3YISIU

o
z
5
=X
N
=

has to be reasonably remembered

precise has to be clear and unambiguous

Description

normative has to be foundational and stringent in expressiveness

contextual

paniasay sIYBIY ||y ‘<WOI||eydsabuay/:

has to be described in a given context

Problem regularly occurring has to be motivated by enough situations

*AjU0 S1X21U02 31M1D3| 32U3IIS J3INdWIOD) Ul UoNINPoIdal 1(3
i)

practically relevant has to be motivated by enough practice

general has to be general enough to be sufficiently reusable

has to be applicable also in variants of the context

Solution highly reusable

best practice has to be considered a best or at least good practice

W ARCHITECTURE

e Rlorei Layer Architectures TLT S

(Patterns)

Horizontally split code or data into A Layer is not allowed to have relationships to or knowledge about any
Layering two or more logically, optionally upper Layers. Additionally, for Closed Layering, each Layer is allowed to e et
Pri nciple also spatially, clearly distinct, have relationships to and knowledge about the directly lower Layer only. .
isolating, named, and ranked Layers. In contrast to Open Layering or Leaky Abstraction, where each Layer is e ks
allowed to have relationships to and knowledge about any lower Layer.

Split related code or data of a Program into Split related code or data of a System into

two or more logically distinct domain- or two, three or more logically and spatially
technology-induced Layers. distinct, network-connected, domain- or

B S Rationale: Separation of Concern, Single S RS ————
Rationale: Separation of Concern, Single Responsibility Principle, Mastering Complexity,
Responsibility Principle, Mastering Complexity, Change Isolation, Functional Abstraction,
Change Isolation, Functional Abstraction. Deployment Partitioning.
FB FrontEnd/Back End CS Client/Server
Split the code of a Program into exactly two Split the code of a System into two spatially

logical Layers: a user-facing Front End and a d distinct, network-connected Layers, each Cli
data-facing Back End. Front En forming a stand-alone Program: a user-facing 9 0
and multi-instantiated (Rich) Client and a

SYSteMNeee reccccceceee=-

Proglim e e e secccc oo e-

Rationale: Separation of Concern, Single Back End
Responsibility Principle, Mastering Complexity,

Change Isolation, Functional Abstraction, Rationale: Multi-User, User Computing
Organisational Alignment. Resource Leverage, Distributed Computing.

FD Facade MW Middleware

Splice a domain-specific Facade Layer into Splice a domain-unspecific Middleware Layer]]]
two Layers of two or more Modules. The extra into a Client/Server communication. The
Facade Layer acts as a broker between the extra Layer is a stand-alone Program Tier and

le
- - - [——————————

Modules. acts as a broker between Client and Server. -

Rationale: Information Hiding, Cross-Cutting e Yo e Yo Yo P ooV P Yo Yo Y

Concern Centralization, Functionality Module | Module | Module Rationale: Communication Peer Discovery Sl
Orchestration, Authorization, Validation, Simplification, Transport Protocol Conversions,

Conversion. Network Topology Flexibility.

data-facing (and logically) single-instantiated
(Thin) Server. Both contain a Front/Back End.

o
3
2
2
=
=}
3
v
=
ES
&
=
o
&
o}
2
3
3

<
9]
a
2
O
o
El
=
=
e)
3
°
=S
T
w
a)
©
>
a
m
o}
o
g
o
a
9]
2
T
=
9

W ARCHITECTURE TECHNISCHE
x FAbuEs ice Architectures TUT e
| | MUNCHEN

(Patterns)

. . Vertically split code or data intotwo The particular slicing should minimize the total

Sllcmg or more logically, optionally also amount of individual relationships between the

Pri nciple spatially, clearly distinct, named, resulting slices. Per type of relationship, there
and unranked slices. should be no cycle in the transitive relationships.

MOD Concerned Module CQRS Command-Query Responsibility Segregation

Slice

Split related code or data (usually across a 0 Split code and data of a Program (across all ;
single Layer) into two or more logically | Layers) or a Tier into exactly two slices to 0
distinct domain- or technology-induced Layer § MOD segregate operations that read data (queries) Command] Query
Modules. : from the operations that update data Slice ! Slice
(commands). :
))

Layer MOD B S MOD S MOD Rationale: Separated Scalability, '

Rationale: Separation of Concern, Single : : Separated Data Access Patterns, Program or Tier

Responsibility Principle, Mastering Complexity. Event Sourcing Approach.

UCS Use-Case Slice SCS Self-Contained System

Factor out common or cross concern code or
data of a Program (across all Layers) into a
single spatially distinct, separate slice.

Split code and data of a Tier (across all Layers)

Layer into two or more distinct, loosely-coupled,
domain-enclosed, functional services, each

S

forming a stand-alone Program.
Layer

Rationale: Heterogeneity, Long-Term Large-
Scale Maintenance, Replaceability, Resilience,
Rationale: Lack of Redundancy, Single Program (Scalability), (Easy Deployment), (Organizational Tier
Point of Truth, Reusability. Alignment), (Composability), (Reusability).

PanIasay sybiy ||y ‘<wodleydsjsbusy//dnl

'AJUO S1X31U0D 21N123] 9UIDS J2INdW0?) Ut UoidNpoid

Split code and data of a System (across all Layers
and Tiers) into two or more distinct, loosely-
coupled, domain-enclosed, functional systems,
each forming a stand-alone sub-System.

Split the code and data of a Program (across
all Layers) into two or more purely logical
slices, one for each distinct, domain-specific
Use-Case.

Rationale: Mastering Complexity, Heterogeneity,
: o) Resilience, Scalability, Easy Deployment,
Rationale: Comprehensibility, Domain Program Organizational Alignment, Reusability, System
Alignment, Mastering Complexity. Replaceability.

[Foein Flow Architectures TUTI 2

(Patterns)
Pipes & Filters

Pass data through a directed graph of Components
and connecting Pipes. The components can be
Sources, where data is produced, Filters, where data
is processed, or Sinks, where data is captured.
Source and Filter components can have one or more
output Pipes. Filter and Sink components can have
one or more input Pipes. Components are
independent processing units and operate fully
asynchronously.

Examples: Unix commands with stdin/stdout/stderr
and the Unix shell connecting them with pipes;
Apache Spark or Apache Camel data stream
processing pipelines.

Perform communication in a Hub & Spoke fashion by
structuring a solution into the three “Layers”
Domain, Application and Framework and use the
Framework layer to connect with the outside
through Ports (general Interfaces) and Adapters
(particular Implementations). Often some Ports &
Adapters are user-facing sources and some are data-
facing sinks, although the motivation for the Ports &
Adapters architecture is to remove this distinction
between user and data sides of a solution.

Examples: Message Queue, Enterprise Service Bus or
Media Streaming Service internal realization.

!

Domain

Application

Framework

Port

!

Perform communication (the Spoke) between
multiple Components through a central Hub
Component. Instead of having to communicate with
N x (N-1) / 2 bi-directional interconnects between N
Components, use the intermediate Hub to
communicate with just N interconnects only.
Sometimes one distinguishes between K (0 < K < N)
source and N - K target Components and then K x (N
- K) uni-directional interconnects are reduced to just
N interconnects, too.

Examples: Message Queue, Enterprise Service Bus,
Module Group Facade, GNU Compiler Collection,
ImageMagick, etc.

Hub & Spoke E
o

IV ‘'<woje

2

m
o}
o
€
o
a
9]
3
@
=
9

W ARCHITECTURE

e Rloriei Process Architectures TUT

(Patterns)

Container, Process, Thread Process/Thread Pool Master-Worker E
N
N

Container
Process/
Thread

Process/ Process/
Thread Thread

Worker Worker Worker
Process/ Process/
Thread Thread

7 ARCHITECTURE

P Ao Cluster Architectures TUT

(Patterns)

Master-Slave (Static Replication) Leader-Follower (Dynamic Replication) Master-Master (Synchronization) E

o

N

w
cos

Client Client Client

Master Slave Leader Follower Follower Master Master W ENES

Cluster Cluster
(primary partition) (secondary partition) Cluster Cluster

—P» Write Operation
---pp» Read Operation

W ARCHITECTURE
7 FUNDAMENTALS

Communicate between two network nodes
in a point-to-point fashion, usually through a
direct link.

Rationale: simple communication where
both nodes know about each other and can
directly reach each other.

A

G—D>

Networking Architectures

B

(Patterns)

Communicate between multiple nodes with
the help of a central packet forwarding hub
node in a star network topology.

Rationale: decouple communication nodes:
instead of Point-to-Point (PTP)
communications between all nodes, there
are just PTP communications with the hub.

RTG Routing FPR (Forward) Proxy

Communicate between two network nodes
in a point-to-point fashion, but by routing
the network packets over intermediate
forwarding nodes (routers).

Rationale: simple communication where
both nodes know about each other, but
cannot directly reach each other.

Communicate between multiple network
nodes (usually all in the client and server role
at the same time) without involving a central
hub node (in the role of a server) — except
for the initial network entry discovery.

Rationale: communication without central
control (although a seed peer is required).

A

P2P Peer-to-Peer RPR Reverse Proxy

C

D

Communicate between two nodes by using
an intermediate forwarding proxy node in

TECHNISCHE
m UNIVERSITAT
MUNCHEN

PTP Point-to-Point BUS Bus/Broker/Relay

e

b

front of the source node.

Rationale: bridge network topology

constraints (segmented networks); caching at

source side; auditing of communication.

Communicate between a source and a target
node by using a masquerading proxy node

directly in front of the target node.

Rationale: load balancing for multiple target

S

nodes; caching at target side; auditing of
communication; security shielding of target
nodes; protocol conversions.

\

Client/Server VPN Virtual (Private) Network

Communicate between multiple nodes in the
client role (making requests, and usually with
ephemeral addresses) and multiple nodes in
the server role (serving responses, and
usually with fixed addresses).

Rationale: communication with central
orchestration, control and data storage.

L—»)
—]

Communicate between nodes in a logical
star network topology on top of an arbitrary
physical routed network topology.

Rationale: secure private network overlaying
an unsecure public network; simplify
network topology.

a

El

'AJUO S1X31U0D 21N123] 9UIDS J2INdW0?) Ul toiaNpoid
PanIasay s1ybIY |1y ‘<wod]eydsebus//d

W ARCHITECTURE
- FUNDAMENTALS

Communicate messages from one source to
exactly one destination node. The
destination node is explicitly and individually
addressed.

Rationale: private communication between
exactly two nodes which both know each
other beforehand.

A

B

Communicate messages as an unordered set
of single packets, usually without any
network congestion control, retries or other
delivery guarantees.

Rationale: simple low-overhead
communication without prior
communication establishment (handshake).

(Patterns)

UCT Unicast (one-to-one) DGR Datagram (Single Packet)

A

/%\\g-

TECHNISCHE

Communication Architectures TUTI

ACT Anycast (one-to-any) STR Stream (Sequence of Packets)

Communicate messages from one source to
one of many destination nodes. The picked
destination node usually is the network-
topology-wise “nearest” or least utilized node
in a group of nodes.

Rationale: Unicast, optimized for network
failover scenarios, load balancing and CDNs.

A

B,

Bs

Communicate messages as an ordered
sequence (stream) of packets, usually with
network congestion control, retries and
delivery guarantees (at-most-once, exactly-
once, at-least-once).

Rationale: reliable communication between
nodes.

A

/@x .

ul B

N

.9 2.

MCT Multicast (one-to-many) Pull (Request/Response, RPC)

Communicate messages from one source to
many destination nodes. The destination
nodes usually form a group and are usually
not individually addressed.

Rationale: node communication where
destination nodes dynamically change or
where total traffic should be reduced.

BCT Broadcast (one-to-all)

Communicate messages from one source to
all available destination nodes. The
destination nodes usually are implicitly
defined by the extend of the local
communication network segment.

Rationale: spreading out messages to all
available nodes for potential responses.

(@

N

Communicate by performing a request (from
the client node) and pulling a corresponding
response (from the server node).

Rationale: Remote Procedure Call (RPC) like
Unicast or Anycast communication.

Communicate by “subscribing” to “channels”
of messages (on one or more receiver nodes
or on an intermediate hub) once and then
publishing events to those “channels”

(on the sender node) multiple times.

Rationale: event-based Multicast or
Broadcast communication.

<wod'|eyds|abu:

'AJUO S1X31U0D 21N123] 9IURIDS JAINAWO?) Ul toidNPoIds.
Paniasay SIy6IY |V -

	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1

