
Dr. Ralf S. Engelschall

Software Engineering
in der industriellen Praxis

(SEIP)



Definition of an Architecture Pattern: unique, catchy,
and associative Name and concise, precise, and
normative Description of a contextual, regularly
occurring, and practically relevant Problem and a
general, highly reusable, and best practice Solution for
it.

The rationales are that an Architecure Pattern: has to
be unambiguously distinguished, has to be recognized
and memorized, has to be intuitively associated to the
solution, has to be reasonably remembered, has to be
clear and unambiguous, has to be foundational and
stringent in expressiveness, has to be described in a
given context, has to be motivated by enough
situations, has to be motivated by enough practice, has
to be general enough to be sufficiently reusable, has to
be applicable also in variants of the context, and has to
be considered a best or at least good practice.

Architecture Patterns especially allow one to
efficiently communicate (name) and benefit from their
captured experience (best practice).

Questions

Why are Architecture Patterns interesting?



With Layering, code or data are cut into two or more
logically — if necessary, also “physically” (spatially) —
Layer. These layers are clearly distinct, isolated from
each other, named and ranked. Layers are always
drawn horizontally.

A layer has no relationship to, or knowledge about,
any layers above him. In addition, he, in Closed
Layering, has a relationship with, or knowledge about,
the direct layer below him. In addition, he may have a
relationship to, or knowledge about, any layer below
him in Open Layering or Leaky Abstraction.

If the layering extends across network boundaries or a
“physical” boundary, one no longer speaks of individual
Layers, but of Tiers.

If a Program is split into a front or user interface
focusing layer and a back or data focusing layer, the
two layers are called Front End and Back End of the
Program. This is not to be confused with Client and
Server, which names two Tiers of a System through
their special role. Both Client and Server are standalone
Programs, each with a Front End and a Back End.

A very special and prominent layer is the Facade, which
separates the Modules of two Layers within a Program.
A variant of the Facade at the level of a System (instead
of at the level of a Program) is the Middleware, which
breaks apart a Client/Server communication.

Questions

How do one call the resulting units if code or data
is split horizontally?



What is the difference between the Layer-pairs
Front/Back End and Client/Server?





When Slicing, code or data are split into two or more
logically — if necessary also “physically” (spatially) —
Slices. These slices are clearly distinct, isolated from
each other, and named. Slices are always drawn
vertically.

Slices in the same Layer should be as independent of
each other as possible. In the case of relationships, at
least no cycle should exist. There are different special
variants of slices, each of which has its own name.

Concerned Modules are Slices of a Layer that realize a
specific domain-specific or technical concern. Common
Package is a Slice of a Tier, where commonalities of
other Layers were moved to. Use-Case Slices are Slices
of a Tier that are dedicated to certain domain-specific
use cases.

With the Command-Query Responsibility Segregation
architecture, a Tier is split into two Slices for
Commands/Writes and Queries/Reads. A Microservice
is a Slice of a Tier, which is executed as a separate
Program and which is concerned with a closed domain-
specific functionality. A Self-Contained System is a
Slice of a whole System that is executed as a separate
Sub-System.

Questions

What does one call the resulting units when code
or data is split vertically?



What does one call the Slices of a Tier, which are
executed as separate Programs and which are
concerned with closed domain-specific
functionalities?





The Flow Architectures are concerned with the
primary data flow or the primary communication of an
application. Here the following three classical
architectural approaches exist.

With Pipes & Filters a directed Graph is built. The
nodes of the graph are the Components, which are
either of type Source, Filter or Sink. The edges of the
graph are the Pipes: the data transmission links
between the Components.

With the special Ports & Adapters (aka Hexagonal
Architecture) a “Hub & Spoke” structure is set up. The
“Hub” are the Components of the application core. The
“Spokes” each consist of a Component, which is
composed of the Port (the interface) and the Adapter
(the implementation).

With Hub & Spoke in general, a central Hub
Component acts as the communication center
between Spoke components which are star-shaped
around the Hub. The crux is that the maximum N x (N -
1) / 2 communication paths between the Spoke
components, thanks to the Hub component, can be
reduced to just N communication paths.

Questions

With the help of which Flow Architecture can N
components be connected with eachother in a
way that instead of N x (N - 1) / 2 communication
paths only N are created?





The Process Architectures are all about the interaction
between different Containers, Processes or Threads.
All three concepts encapsulate code and data.
Containers are the strongest capsule, which
encapsulates both CPU, RAM, hard disk, and network
(e.g. Docker Container). A Process encapsulates CPU
and RAM (e.g., Unix process). In the case of a Thread,
the weakest capsule, only the CPU is encapsulated (e.g.,
Unix thread).

In order to be able to answer several requests at the
same time, server applications use multiple processes/
threads per request. Since the constant creation of such
processes/threads noteworthy reduces the runtime
performance and the hardware load typically should be
limited and not linearly be coupled to the incoming
requests, a so-called Pool of one-time created worker
processes/threads is used (e.g., Apache HTTPd or
NGINX).

Classically, such a pool is split into a single Master
Process/Thread and multiple Worker Processes/
Threads. The permanently running Master generates,
controls, and stops the Workers. Usually, the Workers
are also permanently existent, but in the event of
errors, the Master will actively stop them, or in case of a
crash, automatically restart them (e.g., Node.js
cluster module).

Questions

With which Process Architecture is in practice a
Process/Thread Pool usually managed?





In Cluster Architectures, the merger of compute nodes
to a cluster is addressed.

The Master-Slave architecture is a static replication of
data from a Master server to one or more Slave servers.
The Clients can send read requests to all Servers, but
write requests must be run exclusively via the Master.
This is usually used to increase the Read Performance.

The Leader-Follower architecture is a kind of dynamic
replication of data from a Leader server to multiple
Follower servers. The Clients can send read and write
requests to all servers. Since only the Leader server can
handle write requests, the Follower servers, internally
and intransparently for the Client, forward these to the
Leader server.

This is also the difference to Master-Slave: the Leader is
selected automatically and dynamically between all
servers via a Leader Election Protocol (in the event of a
failure of the current Leader server). The advantage is
that Leader-Follower to Clients feels like Master-Master,
but the cluster does not require any complex conflict
resolution strategy as is the case with Master-Master.

The Master-Master Architecture is a genuine
synchronization of data between two or more equal
Master servers. The Clients can send both read and
write requests to any Master server. However, the
Master servers internally must implement an elaborate
conflict resolution strategy in order to resolve
simultaneous changes to the same data.

Questions

Which simple Cluster Architecture can be used if
the read performance of a server application
should be increased?





In Networking Architectures, the network-topological
communication between computer nodes is
addressed. The simplest way is Point-to-Point
communication via a direct connection of the nodes.

Usually, however, the communication today goes over
a network of nodes, where the individual messages are
exchanged with the help of routing via intermediate
nodes.

If all nodes in both client and server roles communicate
directly with each other, it is called a Peer-to-Peer
architecture. If some nodes are only in the client role
and others are only in the server role, it is called a
Client/Server architecture.

In order to let several nodes communicate with each
other, without these having to know and address each
other, one usually uses a central Bus/Broker. and a star
topology.

If between source and target intermediate nodes are
active, which act as Proxy in the communication and
not only forward the network packets like a Router,
one speaks of either a (Forward) Proxy or a Reverse
Proxy situation. The former, if the proxy acts on the
side of the source node, the latter, if the proxy acts as a
proxy of the destination node.

In addition, a so-called Virtual Private Network can be
established, in which a logical secure “overlay network”
is placed over a physical network.

Questions

With which Network Architecture can several
nodes communicate with each other without
these nodes having to know each other exactly?



What do you call a computer node that acts on
behalf of a target node?





The Communication Architectures address the kind of
communication between components. One
distinguishes primarily four different kinds of message
transmission: with Unicast, a source node sends to
exactly one directly addressed target node. With
Anycast, a source node sends to a group of potential
destination nodes, but the message is delivered to one
destination node in the group only.

With Multicast, a source node also sends to a group of
target nodes, but the message is delivered to all target
nodes in the group. With Broadcast, a source node
sends to all reachable destination nodes without these
particular destination nodes being known to the
source node.

With the kind of messages, one differentiates two
variants: with Datagram, each message consists of
exactly one network packet, and when sending, no
guarantees are given whether and in which order the
messages will arrive at the destination node. In
contrast, with Stream, a message consists of a
sequence of network packets and different guarantees
are given:

In case of packet congestion on intermediate nodes,
the source of the Stream may be throttled. In case of
packet loss, packets are resent. And one might get
control over whether the packet will be delivered at
most once, exactly once, or at least once at the
destination node.

There are usually two modes of client/server
communication: in Pull mode, the client sends a
request, and the server sends a response. The server
cannot proactively (without a prior request) send a
message. In Push mode, the client sends a message in
advance to the server to subscribe to certain types of
messages. After that, the server can send a message to
all subscribed clients at any time.

Usually, Pull is implemented via Unicast/Anycast and
as a Stream, for example, in the HTTP protocol. On the
other hand, Push is usually implemented via
Multicast/Broadcast as a Datagram, for example, in
the DHCP protocol.

Questions

Which well known Web-protocol uses a
communication based on Unicast, Stream and
Pull?




	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions

