TECHNISCHE
TUTT voveesrs
MUNCHEN

Software Engineering in der industriellen Praxis (SEIP)

Dr. Ralf S. Engelschall

7 ARCHITECTURE
7 FUNDAMENTALS

ata Structure Architectures TUTI >

Scalar, Atom, Primitive Type

Plain integer or real number,

single character or character string,
not indexed and (for string only)
accessed in O(1) by character position.

Tuple, Object, Structural Type, Record

Ordered, fixed-size sequence of scalar elements,
each of individual type, indexed by name and
accessed in O(1) by element name.

Sequence, Array, List

Ordered sequence of elements,
each of same type, indexed by position and
accessed in O(1) or O(n) by element position.

Set, Bag, Bucket

Unordered set of elements,
each of same type, not indexed and
accessed in O(1) or O(n) by element reference.

Map, Hash, Associative Array

Unordered sequence of elements,
each of same type, indexed by (scalar) key and
accessed in O(1) by key.

Graph, Nodes & Edges

Unordered set of linked elements (nodes),
each of individual type, indexed by (scalar) key
and accessed in O(1) by key or by following a
directed link (edge).

In-Place Editing

Modify data through direct in-place editing,
overwriting the previous revision.

Stacking Revisions

Modify data through stacking revisions,
preserving all previous revisions.
Latest revision is always on top of stack.

Structural Difference

Modify data through merging, journaled
domain-unspecific structural differences.

Operational Transformation (OT)

Modify data through applying journaled,
domain-specific operational transformations.

Event Sourcing & CRDT

Share data as a chronological sequence of data
change events from which the data states can be
(re)constructed. Optionally, use a Conflict-Free
Replicated Data-Type (CRDT) protocol for the
change events.

Ref.-Counting & Copy-on-Write

Share data between resources by using
reference-counted data chunks, duplicating a
chunk (and resetting its reference count to one)
on write operations only and destroying a chunk
once the reference count drops to zero.

(Patterns)

Key-Value Store

Storage of values in an unordered manner,
indexed and queried by key.

D,
lis Ri \’V\emcdd’\e ,
Redie ockeDB, LevelDB

Triple Store

Storage of subject-predicate-object triples,
indexed and queried by subject/predicate/object
values and example triples.

Redstore, Virfuose

Graph Store

Storage of values as vertices and edgesin a
Eraph, both optionally referencing associated
ey/value pairs. Indexed and queried by key/
value pairs and traversed by following edges.
Neok, OrientDB, ArangsDB

Relational/Table Store

Storage rows of fixed-size, typed value columns,
indexed and queried by column values.

i Qlite,
tqreSQL, MariaDB, S
= q:z ORACLE DB, |BM DB2

Wide-Column Store

Distributed storage of rows of sparse (often
untyped) value columns, indexed and queried
by column values.

Cassandra, MonefDB,
HBase, ScyllaDB

DataVault Store

Long-term historical storage of foreign, arbitrary
relational data in a fixed schema of hubs, links
and satellites, indexed and queried for analysis
and reporting purposes.

DataVault 2.0

Large-Object Store

Storage of unstructured binary-large object
(BLOB) data and its associated meta-data,
indexed and queried by unique id.

info, Seaweed™S,
Minio, Se S 55

File-Tree Store

Storage of unstructured data as named filesin a
directory tree, indexed and %ueried by name path
from root directory to leave file.
ZFS, XFS,
UFS?, APFS

Document Store

Storage of structured "documents",
indexed by id and key/value fields and
queried by id and example documents.

DB, CouchDB,

Monge kDB

Full-Text Store

Storage of unstructured text,
indexed and queried by content words.

elasﬂcSeur:‘n, Selr,
Groongd

Time-Series Store nfloxDB, Metricanls

Storage of integer or real values (y-axis) of a time-
series (x-axis) into a fixed-size storage format in a
round-robin manner where older values are
increasingly aggregated (leading to lower
resolutions at older times) and finally overwritten.

BlockChain Store

Storage of values in an unordered manner within
information blocks which are cryptographically
chained through their hash values and

distributed in a peer-to-peer way. .y . cum, Quorum,
ledger

Tendermint, Hyper'

W ARCHITECTURE
f FUNDAMENTALS

Data Persistence Architectures TUTI =~

(Patterns)

Data Guarantees Data Access Data Spreading & Aggegration

CAP (Trade-In)

A distributed data store cannot provide
more than two out of three guarantees:
Consistency (C), Availability (A), Partition-
Tolerance (P). So, it has to choose
between Consistency (CP) and Availability
(AP) when a network partition or failure
happens.

BASE (NoSQL)

The semantics (usually of NoSQL systems)
of (B)asically (A)vailable, (S)oft state, and
(E)ventual consistency. BASE systems
favor Availability over Consistency in the
CAP-context.

ACID (RDBMS, NewSQL)

The four guarantees provided in parallel
(usually by RDBMS and NewSQL systems):
Atomicity, Consistency, Isolation and
Durability. ACID systems usually favor
Consistency over Availability in the CAP-
context.

Data Access Grouping

Transaction

Protect a sequence of operations from
interim exceptions by bracketing the
operations in a technical transaction
(ensuring that either all or none of the
operations succeed).

Compensation

Protect a sequence of operations from
interim exceptions by undoing the
already succeeded operations through
domain-specific compensating (reverse)
operations.

Shared Read/Write

Shared access to data for both read and
write operations. Example: Multiple
threads on heap or Master-Master
database setup.

Shared Read / Exclusive Write

Shared access to data for read operations
and exclusive access (via a single “owning”
component) to data for write operations.
Example: RDBMS Master-Slave cluster
with shared storage.

Shared Nothing

No shared access to data at all for both
read and write operations. Example:
Leader-Follower setup with RAFT
consensus where Leader writes data only.

Exclusive Locking (Mutex)

Protect data from concurrent access and
resulting inconsistencies with a mutual
exclusion lock (mutex) which allows just a
single peer to access the data at a time.

Optimistic Locking

Protect data from concurrent access and
resulting inconsistencies by taking note of
a revision number or content hash during
read operations and checking that this
information has not changed before
writing the data.

Data River (1-to-N)

A real-time fan-out replication of data
from a single upstream/source data
repository to multiple downstream/target
data repositories.

Data Mart (N-to-1), ODS

A massive sized, easily accessible data
repository for storing “big data” from
many upstream sources in a (real-time
and) structured way and with knowing
the actual subsequent analysis usage.

Data Lake (N-to-1), Cache

A massive sized, easily accessible data
repository for storing "big data" from
many upstream sources in a (real-time)
semi-structured way and without
knowing the actual subsequent usage.

Data Transfer

Replication

Continuously stream or regularily copy
data from a master system to one or more
slave systems in order to either read the
data from slave systems faster or have
slave systems available as a fallback/
backup in case of a failure of the master
system.

Synchronization

Continuously stream or regularly copy
data between multiple master systems

and resolve potential concurrent data
modification conflicts. This way allow
distributed and even disconnected
computing.

z60 [F11]

P
| KLdo) “(90-1 1-7207) 0" L' L UOISIZA uonensn|j| [eaiydessy

Lga 01 pasuadi] PaNAIYOI4 uondnpoiday pazioyineun
L
11eYds[36u3 S Jley 1 Aq 6102-8 107 PRIOYINY ‘(ZL-40-6107) TO'L UOISISA :USIUOD) [en1d3||31u]

U3 'S 4eY 40 ¢C0C-810C 0 Y|

61y |y ‘<wodjeyas|abus/ dny> jjeydssb

*AJUO S3X21U0D 31N123| 32UBDS J3INAWOD) Ul UOIINPOIdaI IO} (AN L) USUDUNI IRNSISAIUN 3UISIU
PanIasay siy

TECHNISCHE

[+~ Application Reference Architecture

o
- .
Focus Layers 5 Tiers
(Abstraction & Implementation) (Logical Distribution) ci_, (Physical Distribution)
. <table> ,‘,'; o ’
TI TeChnlcaI <:::>I=m:<ml> DOM K ; \r/0’|)'39a' ion
. <td>Bar</td> Tree " ° alidation
|I‘IteraCtI0n B ¢ X Synchronization
- L Transformation
o | T DA B BN BN BB R ©- Aggregation
i+ ce Splitting
(%) a = Interface/Facade
(0 oE
H
= Abstract =
= Interaction
L T own PLUS:
Interaction 2
2 Peer Addressing
L Concurrency Control
-é | ll B | Transaction Control
fl:btstrac:ion Level of . E z Transport Security
of Interaction £ k)
Custom Dom.aln : Domain 3% Transport Format
Abstraction ampemen: Service Hd ‘ Services % Network Latency
of Data : T Network Reliability

pa

Domain ,
DD |"pata A R

AJuo s1x31u0d>

Layer Classification Comparison:

[1] Andreas M: zur und
hitek in pr ,2010.
21) jith IBM \ddison-Wesley, 2001.
Database 2 e B el e Ak W ey 20
objects [4] Nilsson: .NET Enterprise Design with Visual Basic .NET and SQL Server 2000, Sams, 2002.

Consumer

Consumer Helper

I Presentation '
[«

Application Presentation ontroller / Mediator
Tec h n . ca I / Domain Domain Domain DS
I Data Persistence Access Data Source Data Mapping
Data Structure H

00100100111 Public Stored Procedures Data Source
11011010110

Private Stored Procedures

Nilsson Layers Fowler Layers; Brown Layersz 7-Layerm

" ARCHITECTURE CI. S A hO m TECHNISCHE

/AW FUNDAMENTA - UNIVERSITAT

o FUNDAVENTLS iIent-Server Architecture
Thin-Client Architecture Rich-Client Architecture

A 4V |

Thin-Client Architecture: Rich-Client Architecture: *
the application consists of a single the application consists of both custom
custom Server program only. The Server Client and Server programs. The Client
program renders the Ul mask and keeps program renders the Ul mask and keeps
the entire Ul state on the Server. the entire Ul state on the Client.

Client Run-Time

User Interface !\/Iaslg (Chrome, Firefox, etc)

User Interface Mask
(HTML/SVG/PNG/(55

(HTML/SVG/PNG/CSS)

Interaction Layer

p;
I KLdo) “(#1-60-1207) 0'0’ L UOISIA :uonensn|| [esiydes

Lga 01 pasuadI P3NUAIYOId UoRINPOIdaY Pazioyineun
1L
10 Aq 10T Pa1oyIny ‘(7 1-60-1207) 00" UOISISA :JUSIUOD) [endR||aiu|

Service Layer (Y -

Data Layer

By 10 100 Y

Client Program

Back End
(IWNL) Uydunip 1B1ISISAIUN 3YDSIU
bu3

my> J[eyospe!

&

. Network Protocol
D’orma|r/1 Data (HTTP, WebSocket,
(JSON/XML) or WebRTC)

Network Protocol User Interface Mask
(HTTP only) (HT) /P

b1y || ‘<WO|eysabus,/

Interaction Layer

Interaction Layer (a5

Front End
Front End
panasay s1y

Service Layer Service Layer (Y -

*A|UO $1X31U0D 3JN123] 32USIDS J2INdWo) Ul uondNpoIdal Io)

Server Program
:
]

Server Program

Data Layer Data Layer

Back End

Server Run-Time
(JVM, Node,js, etc)

Examples: Ul: User Interface RPC/C: Remote Procedure Call / Client-Side Examples:
PHP, JSP, JSF, Next,js, AC: Application Core RPC/S: Remote Procedure Call / Server-Side W3C HTMLS (Angular, React, Vue),
ASPNET, BSP, etc. DP: Data Persistance Flash/Flex, Eclipse RCP, etc.

W ARCHITECTURE
7 FUNDAMENTALS

APIs are intended
to be called direc

Reference Architecture Blueprint

requesting
sibling system

Dependency Direction

Information System Architecture TUT|

Blueprint Usage

Example Scenario 1

Thin Client /
“Thick Server”

LC

Libraries

Common

! !

Interaction Layer

v v
SC SC

Service Layer

Data Layer

Plugins

In case of different
entities per layer, the

entities can be converted

Component Types:

IC: Interaction Component
SF: Service Facade

SC: Service Component
DF: Data Facade

DC: Data Component

at the facades

PF: Plugin Facade

PC: Plugin Component
UC: Utility Component
EC: Entity Component
LC: Library Component

Domain
Use Case
Slice

Service Facade (SF) Potential Functionality:
Request Validation, Use-Case Authorization,
Process Orchestration (Dispatching), Data
Splitting/Aggregation/Conversion, Transaction
Handling, Run-Time Use-Case Tracing, Result
Caching, etc.

Data Facade (DF) Potential Functionality:
Data Access Authorization, Data Orchestration
(Dispatching), Data Splitting/Aggregation/
Conversion, Transaction Handling, Run-Time
Data Access Tracing, Data Caching, etc.

domain-driven slicing

The facades can be
split into logical parts

:

technology-driven slicing

responding
sibling system

E Input/Output Interface

Application Programming
Interface (API)

losed Layering

Rich Client

“Thin Server”

N v |

[al
B
bl
s
2
g
c
g
5
3
o
)
3
o
&
~
S
S
»

0
-£0-€207) §'€'L UOISISA Jud)

3517 ‘PAIGIYOI4 Uondnpoiday p

bidos
oIy

y

(1) USUDUNI JBISISAIUN 3YISIU
U3 'S Jled 1a ¢coe-LLoT

HEIs]
>s[26u3 °S Jjey 1Q Ad €207

bus//.dny>

'A|UO SIX33UO 3INID3| 2DUSIDS JANAWOD) Ul UoRINPOIdS.
PanIasay sIy6IY |y ‘<wodfjeyds|al

TECHNISCHE

Reactive System Architecture TUTI -

W ARCHITECTURE
f FUNDAMENTALS

Architecture & Systems Demand & Deliverables E
R

DEF Definition

Reactive System Architecture enables
the realization of Reactive Systems.

Reactive Systems are in subordinated

CTX Context

Real-time communication
in the context of
Digitization, Internet,
Internet of Things (loT),
Systems of Engagement,
Media and Analytics.

VAL Values

Non-blocking input/output
data processing, fast
responses within tight time
limits, and continuous
availability of the provided
services.

>
3

interaction with their dominating
environment. They continuously
process endless data streams as small
messages, react at any time and
respond within tight time limits. For
this, they continuously observe their
environment and adapt their behaviour

REQ Requirements PRP Properties

Services run fully
autonomously, monitor
themselves, and

Services are elastic and
provide high scalability,
and are resilient and

53] 01 pasuadI] PAUGIYOIJ UoRINPoIday pazioyineun
LEu*do) "(92-60-0207) 0L’ | UOISIaA :uonensn|| [esiydess

to the current situation.

provide high fault
tolerance.

automatically adapt to
changes in the

environment.

Stay Responsive Accept Uncertainty Embrace Failure Assert Autonomy Tailor Consistency Decouple Time Decouple Space Handle Dynamics

Always respond in Build reliability Expect things to go Design components that Individualize consistency Process asynchronously Create flexibility by Continuously adapt to

a timely manner. despite unreliable wrong and design for act independently and per component to balance to avoid coordination embracing the varying demand and
foundations. resilience. interact collaboratively. availability and performance. and waiting. network. resources.

Patterns & Paradigms

U3 'S 42Y 40 0206107 0 14|

b1

ARC Architecture

Microservices, Cloud-Native
Architecture (CNA), Event-
Driven Architecture (EDA).

EXE Execution

Parallelization,
Concurrency, Actors,
Threads, Thread-Pool,
Event-Loop.

COM Communication

Asynchronous
Communication, Non-
Blocking I/O, Sequence,
Push, Backpressure, Quality
of Service (QoS).

INF Infrastructure

Message Queue (MQ), Load
Balancer, Reverse Proxy,
Service Mesh, Virtual
Private Network (VPN).

DAT ' Data

Semantical Event,
Small Message,
Endless Stream.

PRC Processing

Complex Event Processing
(CEP), EAI Patterns, Stream
Processing (map, flatMap,
filter, reduce), Event
Sourcing.

STY | Style

Functional Programming,
Asynchronous
Programming.

ASY Asynchronism

Callback, Promise/Future,
Observable, Publish &
Subscribe.

panasay s1ybiY |y ‘<wodfeydsjsbus//dny> jjeydsis!
Youeasay ABojouydal paljddy Bsw e jjeydsiabul ' jey IQ pue 1ajeyds [SeuydIW AQ 070Z-6107 PRA0YINY ‘(60-1 1-0707) L'L'L UOISI9A U0 [en:

*AJUO S3X21U0D 31N123| 32UDS J3INAWOD) Ul UOIINPOIdaI IO} (AN L) USUDUNI IRNSISAIUN 3UISIU

	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1

