
Software Engineering in der industriellen Praxis (SEIP)

Thank you for �ying Industry Airlines.
Lecture End

To be continued.
Lecture Gap

Let’s have a meal!
LUNCH

Let’s breathe deeply!
BREAK

Fasten your seatbelts, please.
Lecture Start

Dr. Ralf S. Engelschall

Data Structure Types Data Store Types

Plain integer or real number,
single character or character string,
not indexed and (for string only)
accessed in O(1) by character position.

Ordered sequence of elements,
each of same type, indexed by position and
accessed in O(1) or O(n) by element position.

Unordered sequence of elements,
each of same type, indexed by (scalar) key and
accessed in O(1) by key.

Share data between resources by using
reference-counted data chunks, duplicating a
chunk (and resetting its reference count to one)
on write operations only and destroying a chunk
once the reference count drops to zero.

Modify data through direct in-place editing,
overwriting the previous revision.

Modify data through stacking revisions,
preserving all previous revisions.
Latest revision is always on top of stack.

Modify data through merging, journaled
domain-unspecific structural differences.

Modify data through applying journaled,
domain-specific operational transformations.

Data Evolution Approaches

Unordered set of elements,
each of same type, not indexed and
accessed in O(1) or O(n) by element reference.

Ordered, fixed-size sequence of scalar elements,
each of individual type, indexed by name and
accessed in O(1) by element name.

Long-term historical storage of foreign, arbitrary
relational data in a fixed schema of hubs, links
and satellites, indexed and queried for analysis
and reporting purposes.

DataVault 2.0

Storage of unstructured binary-large object
(BLOB) data and its associated meta-data,
indexed and queried by unique id.

Minio, SeaweedFS,
AWS S3

Storage of unstructured data as named files in a
directory tree, indexed and queried by name path
from root directory to leave file.

ZFS, XFS,

UFS2, APFS

Storage of integer or real values (y-axis) of a time-
series (x-axis) into a fixed-size storage format in a
round-robin manner where older values are
increasingly aggregated (leading to lower
resolutions at older times) and finally overwritten.

Storage of unstructured text,
indexed and queried by content words.

ElasticSearch, Solr,
Groonga

Storage of values in an unordered manner within
information blocks which are cryptographically
chained through their hash values and
distributed in a peer-to-peer way. Ethereum, Quorum,

Tendermint, Hyperledger

Storage of structured "documents",
indexed by id and key/value fields and
queried by id and example documents.

MongoDB, CouchDB,
RethinkDB

Distributed storage of rows of sparse (often
untyped) value columns, indexed and queried
by column values.

Cassandra, MonetDB,

HBase, ScyllaDB

Storage rows of fixed-size, typed value columns,
indexed and queried by column values.

PostgreSQL, MariaDB, SQLite,

H2, ORACLE DB, IBM DB2

Storage of values as vertices and edges in a
graph, both optionally referencing associated
key/value pairs. Indexed and queried by key/
value pairs and traversed by following edges.

Neo4J, OrientDB, ArangoDB

Storage of subject-predicate-object triples,
indexed and queried by subject/predicate/object
values and example triples.

Redstore, Virtuoso

Storage of values in an unordered manner,
indexed and queried by key.

Redis, Riak, MemcacheD,

RocksDB, LevelDB

Share data as a chronological sequence of data
change events from which the data states can be
(re)constructed. Optionally, use a Conflict-Free
Replicated Data-Type (CRDT) protocol for the
change events.Unordered set of linked elements (nodes),

each of individual type, indexed by (scalar) key
and accessed in O(1) by key or by following a
directed link (edge).

(Patterns)

Scalar, Atom, Primitive Type

Tuple, Object, Structural Type, Record

Sequence, Array, List

Set, Bag, Bucket

Map, Hash, Associative Array

Graph, Nodes & Edges

In-Place Editing

Stacking Revisions

Structural Difference

Operational Transformation (OT)

Event Sourcing & CRDT

Ref.-Counting & Copy-on-Write

Key-Value Store

Triple Store

Graph Store

Relational/Table Store

Wide-Column Store

DataVault Store

Large-Object Store

File-Tree Store

Document Store

Full-Text Store

Time-Series Store InfluxDB, MetricTank,
RRDTool

BlockChain Store

Data Sharing Approaches

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.1.3 (2020-09-26), Authored 2011-2020 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.1.1 (2023-11-26), Copyright ©

 2012-2023 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
09.1

Data Structure Architectures

Data Access

Data Consistency Data TransferData Access Grouping

Data Spreading & AggegrationData Guarantees

A distributed data store cannot provide
more than two out of three guarantees:
Consistency (C), Availability (A), Partition-
Tolerance (P). So, it has to choose
between Consistency (CP) and Availability
(AP) when a network partition or failure
happens.

CAP (Trade-In)

The semantics (usually of NoSQL systems)
of (B)asically (A)vailable, (S)oft state, and
(E)ventual consistency. BASE systems
favor Availability over Consistency in the
CAP-context.

BASE (NoSQL)

The four guarantees provided in parallel
(usually by RDBMS and NewSQL systems):
Atomicity, Consistency, Isolation and
Durability. ACID systems usually favor
Consistency over Availability in the CAP-
context.

ACID (RDBMS, NewSQL)

Protect a sequence of operations from
interim exceptions by bracketing the
operations in a technical transaction
(ensuring that either all or none of the
operations succeed).

Transaction

Protect a sequence of operations from
interim exceptions by undoing the
already succeeded operations through
domain-speci!c compensating (reverse)
operations.

Compensation

Shared access to data for both read and
write operations. Example: Multiple
threads on heap or Master-Master
database setup.

Shared Read/Write

Shared access to data for read operations
and exclusive access (via a single “owning”
component) to data for write operations.
Example: RDBMS Master-Slave cluster
with shared storage.

Shared Read / Exclusive Write

No shared access to data at all for both
read and write operations. Example:
Leader-Follower setup with RAFT
consensus where Leader writes data only.

Shared Nothing

Protect data from concurrent access and
resulting inconsistencies with a mutual
exclusion lock (mutex) which allows just a
single peer to access the data at a time.

Exclusive Locking (Mutex)

Protect data from concurrent access and
resulting inconsistencies by taking note of
a revision number or content hash during
read operations and checking that this
information has not changed before
writing the data.

Optimistic Locking

A real-time fan-out replication of data
from a single upstream/source data
repository to multiple downstream/target
data repositories.

Data River (1-to-N)

A massive sized, easily accessible data
repository for storing “big data” from
many upstream sources in a (real-time
and) structured way and with knowing
the actual subsequent analysis usage.

Data Mart (N-to-1), ODS

A massive sized, easily accessible data
repository for storing "big data" from
many upstream sources in a (real-time)
semi-structured way and without
knowing the actual subsequent usage.

Data Lake (N-to-1), Cache

Continuously stream or regularily copy
data from a master system to one or more
slave systems in order to either read the
data from slave systems faster or have
slave systems available as a fallback/
backup in case of a failure of the master
system.

Replication

Continuously stream or regularly copy
data between multiple master systems
and resolve potential concurrent data
modi!cation con"icts. This way allow
distributed and even disconnected
computing.

Synchronization

(Patterns)

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.2 (2019-04-12), Authored 2018-2019 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.1.0 (2022-11-06), Copyright ©

 2018-2022 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
09.2

Data Persistence Architectures

A
ction-Flow

[1] Andreas Martens: Architekturbasiertes Vorgehensmodell zur Identi�zierung und Lokalisierung von
 Architektur-Kriterien in Enterprise-Anwendungen, Universität Paderborn, 2010.
[2] Brown et al.: Enterprise Java Programming with IBM Websphere, Addison-Wesley, 2001.
[3] Martin Fowler: Patterns of Enterprise Application Architecture, Addison-Wesley, 2003.
[4] Nilsson: .NET Enterprise Design with Visual Basic .NET and SQL Server 2000, Sams, 2002.

In
te

ra
ct

io
n

D
om

ai
n

D
at

a

Abstraction
of Interaction

Abstraction
of Data

D
ata-Flow

State-Flow

Error-Flow

Domain
Service Domain

Services

Domain
Interaction

Domain
Data

Abstract
Data

Technical
Data

Abstract
Interaction

Technical
Interaction

Dialog
Control

Widget
Control

DOM
Tree

Domain
Objects

Database
Objects

Data
Structure

User
Password

System Entry

Login

 <table>
 <tr>
 <td>Foo</td>
 <td>Bar</td>
 </tr>
 </table>

00100100111
11011010110

11011

10001

In
te

rn
al

 F
lo

w
s

(b
et

w
ee

n
La

ye
rs

)

Layers
(Logical Distribution)

PLUS:
...

Peer Addressing
Concurrency Control
Transaction Control
Transport Security
Transport Format
Network Latency

Network Reliability
...

Layer Classi�cation Comparison:

Brown Layers [2]

Controller / Mediator

Presentation

Domain

Data Mapping

Data Source

Fowler Layers [3]

Presentation

Domain

Data Source

Nilsson Layers [4]

Consumer

Consumer Helper

Application

Domain

Persistence Access

Public Stored Procedures

Private Stored Procedures

7-Layer [1]

TI

AI

DI

DS

DD

AD

TD

Tiers
(Physical Distribution)

Ex
te

rn
al

 F
lo

w
s

(b
et

w
ee

n
Ti

er
s)

TI

AI

TD

AD

DD

DS

DI

Level of
Custom
Implemen-
tation

Fa
t C

lie
nt

Ri
ch

 C
lie

nt

Th
in

 C
lie

nt

St
an

da
lo

ne
 D

es
kt

op
 A

pp
lic

at
io

n ...
Propagation

Validation
Synchronization
Transformation

Aggregation
Splitting

Interface/Facade
....

Focus
(Abstraction & Implementation)

Licensed to Augsburg U
niversity for reproduction in Com

puter Science lecture contexts only..
Licensed to Technische U

niversität M
ünchen (TU

M
) for reproduction in Com

puter Science lecture contexts only.
Licensed to m

sg system
s ag for reproduction in m

sg Applied Technology Research training contexts only.
Licensed to SEA Softw

are Engineering Academ
y gG

m
bH

 for reproduction in education contexts only.

Academy
Engineering
SoftwareRa

lf S
. Engelschall Signature Series Orig

in
al

Intellectual Content: Version 1.0.9 (2022-10-09), Authored 2009-2022 by M
atthias Brusdeylins, Andreas M

artens and D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.9 (2022-10-09), Copyright ©

 2012-2022 D
r. Ralf S. Engelschall <

http://engelschall.com
>

, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
10.1

A
F

Application Reference Architecture

2

1

1

2

3

4

Thin-Client Architecture Rich-Client Architecture

Client Run-Time
(Chrome, Firefox, etc)

Server Run-Time
(JVM, Node.js, etc)

Interaction Layer

Data Layer

Fr
on

t E
nd

Ba
ck

 E
nd

Service Layer

Se
rv

er
 P

ro
gr

am

User Interface Mask
(HTML/SVG/PNG/CSS)

Client Run-Time
(Chrome, Firefox, etc)

Server Run-Time
(JVM, Node.js, etc)

Interaction Layer

Data Layer

Interaction Layer

Data Layer

Fr
on

t E
nd

Fr
on

t E
nd

Ba
ck

 E
nd

Ba
ck

 E
nd

Service Layer

Service Layer

Se
rv

er
 P

ro
gr

am
Cl

ie
nt

 P
ro

gr
am

Domain Data
(JSON/XML)

User Interface Mask
(HTML/SVG/PNG/CSS)

User Interface Mask
(HTML/SVG/PNG/CSS)

UI

AC

DP DP

AC

UI

AC

RPC/C

RPC/S

UI: User Interface
AC: Application Core
DP: Data Persistance

RPC/C: Remote Procedure Call / Client-Side
RPC/S: Remote Procedure Call / Server-Side

Network Protocol
(HTTP only)

Network Protocol
(HTTP, WebSocket,

or WebRTC)

Thin-Client Architecture:
the application consists of a single

custom Server program only. The Server
program renders the UI mask and keeps

the entire UI state on the Server.

Rich-Client Architecture:
the application consists of both custom
Client and Server programs. The Client
program renders the UI mask and keeps
the entire UI state on the Client.

 Examples:
PHP, JSP, JSF, Next.js,
ASP.NET, BSP, etc.

Examples:
W3C HTML5 (Angular, React, Vue),

Flash/Flex, Eclipse RCP, etc.

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.0 (2021-09-14), Authored 2021 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.0 (2021-09-14), Copyright ©

 2021 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
10.2

Client-Server Architecture

IC ICIC IC

SF

SC SC SCSC

DF

DC DC DCDC

Service Layer

Interaction Layer

Data Layer

... ...

...

......

PC

...

PC

PC

PC

PC
(3rd party)

PluginsLibraries

LC

LC

LC

...

LC

LC

PF

LC

UC: Utility Component
EC: Entity Component
LC: Library Component

PF: Plugin Facade
PC: Plugin Component

IC: Interaction Component
SF: Service Facade
SC: Service Component
DF: Data Facade
DC: Data Component

LC

Application Programming
Interface (API)

Input/Output Interface

Domain
Use Case

Slice

Rich Client

Example Scenario 2

Common

UC

UC

UC

UC

UC

UC

EC

PF

PF

“Thin Server”

Dependency Direction

APIs are intended
to be called directly

In case of di!erent
entities per layer, the

entities can be converted
at the facades

domain-driven slicing technology-driven slicing

responding
sibling system

requesting
sibling system

Service Facade (SF) Potential Functionality:
Request Validation, Use-Case Authorization,
Process Orchestration (Dispatching), Data
Splitting/Aggregation/Conversion, Transaction
Handling, Run-Time Use-Case Tracing, Result
Caching, etc.

Data Facade (DF) Potential Functionality:
Data Access Authorization, Data Orchestration
(Dispatching), Data Splitting/Aggregation/
Conversion, Transaction Handling, Run-Time
Data Access Tracing, Data Caching, etc.

The facades can be
split into logical parts

Thin Client /
“Thick Server”

Example Scenario 1

Closed Layering

Component Types:

Reference Architecture Blueprint Blueprint Usage

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.3.5 (2023-07-15), Authored 2007-2023 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.2.3 (2022-10-09), Copyright ©

 2011-2022 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
10.3

Information System Architecture

Architecture & Systems Demand & Deliverables

Real-time communication
in the context of
Digitization, Internet,
Internet of Things (IoT),
Systems of Engagement,
Media and Analytics.

ContextCTX

Non-blocking input/output
data processing, fast
responses within tight time
limits, and continuous
availability of the provided
services.

ValuesVAL

Services are elastic and
provide high scalability,
and are resilient and
provide high fault
tolerance.

RequirementsREQ

Services run fully
autonomously, monitor
themselves, and
automatically adapt to
changes in the
environment.

PropertiesPRP

Parallelization,
Concurrency, Actors,
Threads, Thread-Pool,
Event-Loop.

ExecutionEXE

Asynchronous
Communication, Non-
Blocking I/O, Sequence,
Push, Backpressure, Quality
of Service (QoS).

CommunicationCOM

Callback, Promise/Future,
Observable, Publish &
Subscribe.

AsynchronismASY

Semantical Event,
Small Message,
Endless Stream.

DataDAT

Complex Event Processing
(CEP), EAI Patterns, Stream
Processing (map, !atMap,
"lter, reduce), Event
Sourcing.

ProcessingPRC

Functional Programming,
Asynchronous
Programming.

StyleSTY

Microservices, Cloud-Native
Architecture (CNA), Event-
Driven Architecture (EDA).

ArchitectureARC

Message Queue (MQ), Load
Balancer, Reverse Proxy,
Service Mesh, Virtual
Private Network (VPN).

InfrastructureINF

Reactive System Architecture enables
the realization of Reactive Systems.

Reactive Systems are in subordinated
interaction with their dominating
environment. They continuously
process endless data streams as small
messages, react at any time and
respond within tight time limits. For
this, they continuously observe their
environment and adapt their behaviour
to the current situation.

Patterns & Paradigms

+ + + +

DEF De"nition

Stay Responsive
Always respond in
a timely manner.

Principles
Accept Uncertainty
Build reliability
despite unreliable
foundations.

Embrace Failure
Expect things to go
wrong and design for
resilience.

Assert Autonomy
Design components that
act independently and
interact collaboratively.

Tailor Consistency
Individualize consistency
per component to balance
availability and performance.

Decouple Time
Process asynchronously
to avoid coordination
and waiting.

Decouple Space
Create !exibility by
embracing the
network.

Handle Dynamics
Continuously adapt to
varying demand and
resources.

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.1.1 (2020-11-09), Authored 2019-2020 by M
ichael Schäfer and D

r. Ralf S. Engelschall at m
sg Applied Technology Research

G
raphical Illustration: Version 1.1.0 (2020-09-26), Copyright ©

 2019-2020 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
10.4

Reactive System Architecture

	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1

