
Dr. Ralf S. Engelschall

Software Engineering
in der industriellen Praxis

(SEIP)



The Software Architect distinguishes only 6 Data
Structure Types for data elements: Scalar (e.g. Integer,
String, etc), Tuple (ordered fixed-size sequence of
Scalars), Sequence (ordered sequence of elements), Set
(unordered set of elements), Map (unordered set of
elements, each indexed by key) and Graph (unordered
set of elements, each indexed by key or by following a
link between elements). All complex specific data
structures in practice, for the Software Architect, are
only the combination of these 6 types.

There are numerous Data Evolution Approaches, with
which data can change over time: in the simplest case,
In-Place Editing, data is simply changed directly.
Access to previous states does not exist. If one wants to
access previous states, one can use Stacking Revisions,
in which the entire data set is copied before each
change. So that the entire data record does not have to
be copied, Structural Difference stores only a technical
difference between the old and the new data records.
Alternatively, with Operational Transformation, the
technical change operations can be stored as a journal.

If such a journal is used also to keep replicas of the data
sets up-to-date, one refers to it as Event Sourcing. If
the journal is used as the protocol of so-called Conflict-
Free Replicated Data-Types (CRDT), instead of
(unidirectional) replication, a (bidirectional)
synchronization can be achieved. If several processes/
threads logically operate on copies, but physically on
the same data sets, Copy-on-Write and Reference
Counting can be used to achieve common access and
the life cycle of the data sets can nevertheless be
reasonably controlled.

For the storage of data in databases, there are
numerous Data Store Types. These differ primarily in
the type and flexibility of the data structure and the
guarantees provided. The most common type is the
Relational/Table Store. The most elegant type is the
Graph Store. The most convenient is the Document
Store.

Questions

Name 3 Data Evolution Approaches, each of
which allows to access the previous states of the
data?





In the area of Data Guarantees, there are three main
aspects: The CAP theorem addresses the so-called
“trade-in”: In practice, one usually has to choose
between Consistency + Partition-Tolerance (CP) or
Availability + Partition-Tolerance (AP). Both at the same
time is not possible. With BASE systems, AP is usually
favored. For a traditional RDBMS with ACID guarantees,
one usually favors CP.

With Data Access Grouping one knows about
Transaction and Compensation. The former is a
“technical bracket” that allows you to revert to the
previous state in case of an error. The latter is a
“domain-specific bracket,” where so-called
compensation operations allow to “cancel” the earlier
changes in order to regain a previous consistent state.

With the Data Access of two or more processes/threads
on the same data one distinguishes between the
approaches Shared Read/Write (all read and write the
same data), Shared Read/Exclusive Write (all read and
and only one writes the same data) and Shared
Nothing (all read and write to the equal synchronized
data).

With the Data Consistency one knows about Exclusive
Locking (per time unit only one writes) and Optimistic
Locking (all try to write, but recognize and resolve a
conflict).

With Data Spreading & Aggregation one differentiates
three kinds: with the Data River the data are replicated
from a master system to many slave systems to achieve,
among other things, a higher read performance. With
the Data Mart (structured data) and Data Lake (semi-
structured data), data is replicated from one master
system to many slave systems in order to centrally
report or cache the data.

With the Data Transfer we finally distinguish between
the unidirectional and conflict-free Replication and the
bidirectional and conflict-rich Synchronization.

Questions

What is the name of the approach in which data is
replicated from a master system to many slave
systems?





In an application, it is possible to distinguish 7 logical
layers, each grouped in two ways: on the one hand,
there are the three sequential layer groups Technical/
Abstract/Domain Interaction, Domain Service and
Domain/Abstract/Technical Data, on the other hand,
there are the three nested layer groups Technical
Interaction/Data, Abstract Interaction/Data and
Domain Interaction/Service/Data.

In addition, one can distinguish 4 primary flows in an
application: the Action Flow consequently runs from
top to bottom only because all actions at the top are
triggered by the user (or neighboring systems); the
Error Flow consistently runs only in the opposite
direction, i.e., from the bottom to the top, because
errors, in the worst case, must be reported to the user;
the (domain-specific) Data Flow and the (technical)
State Flow run in both directions because data and
states have to be persisted as well as displayed.

The abstraction of Interaction/Data in the layers
increases from the top/bottom towards the middle, so
most of the functional code of an application is written
there. For the upper/lower layers, one usually massively
relies on Open Source libraries/frameworks.

If instead of a logical cut (resulting in an Internal Flow
between the layers) between two layers, one makes a
physical cut (which then results in an External Flow),
i.e., one distributes the application into single
programs on different computers, then the resulting
architecture is called according to the scope and
responsibility of the client.

With Thin Client, only the Technical Interaction is
offloaded to the client, while with Rich Client the entire
user interface (i.e., all three layers Technical/Abstract/
Domain Interaction) is autonomously offloaded to the
client (usually as a so-called “HTML5 Single-Page-
Application”), with Fat Client there is no more
associated server at all, and with the Standalone
application, there is only one single program.

Questions

What is the name of the application architecture in
which the entire user interface runs autonomously
on the client, while the server only provides purely
functional services?



What are the web applications named that
implement a Rich Client architecture?





In the Thin-Client Architecture, the application
consists of a single custom Server program only. This
Server program renders the User Interface Mask and
keeps the entire state of the User Interface on the
Server.

The advantage of this architecture is that the
application can be updated very easily. The
disadvantage of this architecture is that the user
interface reacts sluggishly, and the state of the user
interfaces of all clients must be kept on the server,
which can make the server a bottleneck.

In the Rich-Client Architecture, the application
consists of both custom Client and Server programs.
The Client program renders the User Interface mask
and keeps the entire state of the User Interface on the
Client.

The advantage of this architecture is that the user
interface is highly responsive, only domain-specific
data has to be exchanged between the client and the
server and the server server becomes less of a
bottleneck. The disadvantage of this architecture is
that, if necessary, the client has to be updated explicitly
via an installation procedure.

Questions

With which Client Architecture does the User
Interface offer the higher responsiveness?





A (business) Information System usually follows a
stringent component-based reference architecture.
This is represented “full blown” and can be arbitrarily
“slimmed down.”

First, this reference architecture consists of 3
substantial Layers: the Interaction Layer with the
(technically cut) components, which provide the I/O-
based interfaces to the user (User Interface) and/or
requesting neighboring systems (via Network
interface), the Service Layer with the (domain-
specifically cut) service components (also called
Application Core) and the Data Layer with the
(technically cut) components that provide the
connection to the own database and/or neighboring
systems to be queried.

Note that the “docking position” of a neighboring
system depends on its roles: if it requests, it docks to
the Interaction Layer; if it is queried, it docks at the Data
Layer. If it happens to have both roles, it docks twice.
The other view is that both the user and the database
can be understood as special “neighbor systems.”

To connect the N Interaction Components (IC) with M
Service Components (SC) a decoupling Service Facade
(SF) is usually inserted. For the same reason, there is
usually also a Data Facade.

The Data Model is offloaded to common Entity
Components (EC). Together with possibly shared code,
both live in one Common Slice. Libraries and Plugins
are also offloaded to separate slices, but there are two
major differences: Libraries are passive and provide
their functionality to the application via their interfaces.
Plugins are active and control the application in that
they hook into the application via Service Provider
Interfaces (SPI) of the Plugin Facades.

In the application, there has to be only exactly one
Dependency Direction so that the application (in the
opposite direction of the dependencies) can be built
cleanly. The reference architecture is usually also
instantiated twice in order to design both a Rich Client
and an associated “Thin Server” from it.

Questions

With which layer pattern can in an Information
System the Interaction Components be
decoupled from the Service Components?



In which order are the components of an
application built?





Reactive System Architecture enables the realization
of Reactive Systems. Reactive Systems are in
subordinated interaction with their dominating
environment. They continuously process endless data
streams as small messages, react at any time and
respond within tight time limits. For this, they
continuously observe their environment and adapt
their behaviour to the current situation.

Reactive Systems are primarily used in the context of
real-time communication where services are provided,
which have to be elastic and provide high scalability,
and which have to be reliable and provide high fault
tolerance.

Questions

Which two essential requirements do Reactive
Systems fulfill?



What characterizes Reactive Systems in respect to
their data processing?




	Questions
	Questions
	Questions
	Questions
	Questions
	Questions

