TECHNISCHE
MUNCHEN

Software Engineering

in der industriellen Praxis
(SEIP)

Dr. Ralf S. Engelschall

W ARCHITECTURE
f FUNDAMENTALS

Data Structure Architectures TUTI -

(Patterns)

Scalar, Atom, Primitive Type

Plain integer or real number,

single character or character string,
not indexed and (for string only)
accessed in O(1) by character position.

Tuple, Object, Structural Type, Record

Ordered, fixed-size sequence of scalar elements,
each of individual type, indexed by name and
accessed in O(1) by element name.

Sequence, Array, List

Ordered sequence of elements,
each of same type, indexed by position and
accessed in O(1) or O(n) by element position.

Set, Bag, Bucket

Unordered set of elements,
each of same type, not indexed and
accessed in O(1) or O(n) by element reference.

Map, Hash, Associative Array

Unordered sequence of elements,
each of same type, indexed by (scalar) key and
accessed in O(1) by key.

In-Place Editing

Modify data through direct in-place editing,
overwriting the previous revision.

Stacking Revisions

Modify data through stacking revisions,
preserving all previous revisions.
Latest revision is always on top of stack.

Structural Difference

Modify data through merging, journaled
domain-unspecific structural differences.

Operational Transformation (OT)

Modify data through applying journaled,
domain-specific operational transformations.

Event Sourcing & CRDT

Key-Value Store

Storage of values in an unordered manner,
indexed and queried by key.

Triple Store

Storage of subject-predicate-object triples,
indexed and queried by subject/predicatelobject
values and example triples.

Graph Store

Storage of values as vertices and edges in a
raph both optionally referencing associat:
Ylvalue pairs. Indexed and queried by key,
ue pairs and traversed by following e

Neos

Relational/Table Store

Storage rows of fixed-size, typed value columns,
indexed and queried by column values.

Wide-Column Store

Distributed storage of rows of sparse (often
untyped) value columns, indexed and queried
by column values.

Large-Object Store

Storage of unstructured binary-large object
(BLOB) data and its associated meta-data,
indexed and queried by unique id.

File-Tree Store

Storage of unstructured data as named files in a
directory tree, indexed and %uerled by name path
from root directory to leave

Document Store

Storage of structured "documents’,
indexed by id and key/value fields and
queried by id and example documents.

M

Full-Text Store

Storage of unstructured text,
indexed and queried by content words.

Time-Series Store

Storage of integer or real values (y-axis) of a time-
series (x-axis) into a fixed-size storage format in a
round-robin manner where oldervalues are
increasingly ag?vegated (Ieadmﬂg

resolutions at older times) and nally overwntten.

o
0
=

"

Share data as a chronological sequence of data
change events from which the data states can be
(re)constructed. Optionally, use a Conflict-Free
Replicated Data-Type (CRDT) protocol for the
change events.

Graph, Nodes & Edges DataVault Store BlockChain Store
Unordered set of linked elements (nodes),
each of individual type, indexed by (scalar) key
and accessed in O(1) by key or by following a
directed link (edge).

Long-term historical storage of foreign, arbitrary
relational data in a fixed schema of hubs, links
and satellites, indexed and queried for analysis
and reporting purposes.

Storage of values in an unordered manner within
information blocks which are cryptographically
chained through their hash values and
distributed in a peer-to-peer way.

Ref.-Counting & Copy-on-Write

Share data between resources by using
reference-counted data chunks, duplicating a
chunk (and resetting its reference count to one)
on write operations only and destroying a chunk
once the reference count drops to zero.

The Software Architect distinguishes only 6 Data
Structure Types for data elements: Scalar (e.g. Integer,
String, etc), Tuple (ordered fixed-size sequence of
Scalars), Sequence (ordered sequence of elements), Set
(unordered set of elements), Map (unordered set of
elements, each indexed by key) and Graph (unordered
set of elements, each indexed by key or by following a
link between elements). All complex specific data
structures in practice, for the Software Architect, are
only the combination of these 6 types.

If such a journal is used also to keep replicas of the data
sets up-to-date, one refers to it as Event Sourcing. If
the journal is used as the protocol of so-called Conflict-
Free Replicated Data-Types (CRDT), instead of
(unidirectional) replication, a (bidirectional)
synchronization can be achieved. If several processes/
threads logically operate on copies, but physically on
the same data sets, Copy-on-Write and Reference
Counting can be used to achieve common access and
the life cycle of the data sets can nevertheless be
reasonably controlled.

There are numerous Data Evolution Approaches, with
which data can change over time: in the simplest case,
In-Place Editing, data is simply changed directly.
Access to previous states does not exist. If one wants to
access previous states, one can use Stacking Revisions,
in which the entire data set is copied before each Relational/Table Store. The most elegant type is the
change. So that the entire data record does not have to Graph Store. The most convenient is the Document
be copied, Structural Difference stores only a technical Store.

difference between the old and the new data records.
Alternatively, with Operational Transformation, the
technical change operations can be stored as a journal.

For the storage of data in databases, there are
numerous Data Store Types. These differ primarily in
the type and flexibility of the data structure and the
guarantees provided. The most common type is the

Questions

© Name 3 Data Evolution Approaches, each of
which allows to access the previous states of the
data?

W ARCHITECTURE
f FUNDAMENTALS

Data Guarantees
CAP (Trade-In)

A distributed data store cannot provide

more than two out of three guarantees:

Consistency (C), Availability (A), Partition-

Tolerance (P). So, it has to choose

between Cons\stency (CP) and Availability

LAP) when a network partition or failure
appens.

Shared Read/Write

database setup.

BASE (NoSQL)

The semantics (usually of NoSQL systems)
of (B)asically (A)vailable, (S)oft state, and
(E)ventual consistency. BASE systems
favor Availability over Consistency in the

CAP-context. with shared storage.

ACID (RDBMS, NewSQL)

The four guarantees provided in parallel
(usually by RDBMS and NewSQL systems):

Shared Nothing

Atomicity, Consistency, Isolation and
Durability. ACID systems usually favor
Consistency over Availability in'the CAP-
context.

Leader-Follower setup with R

Data Access Grouping

Transaction

Protect a sequence of operations from
interim exceptions by bracketing the
operations in a technical transaction
(ensuring that either all or none of the
operations succeed).

Compensation

Optimistic Locking

Protect a sequence of operations from
interim exceptions by undoing the
already succeeded operations through
domain-specific compensating (reverse)
operations.

writing the data.

In the area of Data Guarantees, there are three main
aspects: The CAP theorem addresses the so-called
“trade-in": In practice, one usually has to choose
between Consistency + Partition-Tolerance (CP) or
Availability + Partition-Tolerance (AP). Both at the same
time is not possible. With BASE systems, AP is usually
favored. For a traditional RDBMS with ACID guarantees,
one usually favors CP.

With Data Access Grouping one knows about
Transaction and Compensation. The former is a
“technical bracket” that allows you to revert to the
previous state in case of an error. The latteris a
“domain-specific bracket,” where so-called
compensation operations allow to “cancel” the earlier
changes in order to regain a previous consistent state.

With the Data Access of two or more processes/threads
on the same data one distinguishes between the
approaches Shared Read/Write (all read and write the
same data), Shared Read/Exclusive Write (all read and
and only one writes the same data) and Shared
Nothing (all read and write to the equal synchronized
data).

Data Access

Shared access to data for both read and
write operations. Example: Multiple
threads on heap or Master-Master

Shared Read / Exdusive Write

Shared access to data for read operations
and exclusive access (via a single “owning”
component) to data for write operations.

Example: RDBMS Master-Slave cluster

No shared access to data at all for both
read and write operations. Exam le:

consensus where Leader wrltes data only.

Exclusive Locking (Mutex)

Protect data from concurrent access and
resulting inconsistencies with a mutual
exclusion lock (mutex) which allows just a
single peer to access the data at a time.

Protect data from concurrent access and
resulting inconsistencies by taking note of
a revision number or content hash during
read operations and checking that this
information has not changed before

Data Persistence Architectures TUTI "

(Patterns)

Data Spreading & Aggegration
Data River (1-to-N)

A real-time fan-out rEP|ICat\On of data
from a single upstream/source data
repository to multiple downs(ream/target
data repositories.

Data Mart (N-to-1), ODS

Amassive sized, easily accessible data
repository for storing “big data” from

many upstream sources in a (real-time
and) structured way and with knowing
the actual subsequent analysis usage.

Data Lake (N-to-1), Cache

A massive sized, easily accessible data
repository for storing "big data" from
many upstream sources in a (real-time)
semi-structured way and without
knowing the actual subsequent usage.

Data Transfer

Replication

Commuously stream or regularily copy

data from a master system to one or more
slave systems in order to either read the
data from slave systems faster or have
slave systems available as a fallback/
backup in case of a failure of the master
system.

Synchronization

Continuously stream or regularly copy
data between multiple master systems
and resolve potential concurrent data
modification conflicts. This way allow
distributed and even disconnected
computing.

With the Data Consistency one knows about Exclusive
Locking (per time unit only one writes) and Optimistic
Locking (all try to write, but recognize and resolve a
conflict).

With Data Spreading & Aggregation one differentiates
three kinds: with the Data River the data are replicated
from a master system to many slave systems to achieve,
among other things, a higher read performance. With
the Data Mart (structured data) and Data Lake (semi-
structured data), data is replicated from one master
system to many slave systems in order to centrally
report or cache the data.

With the Data Transfer we finally distinguish between
the unidirectional and conflict-free Replication and the
bidirectional and conflict-rich Synchronization.

Questions

© What is the name of the approach in which data is
replicated from a master system to many slave
systems?

zeo [

TECHNISCHE

[+ »==ws Application Reference Architecture TUTI: =

<table>
<tr>

o

Tiers

(Physical Distribution)

Focus

(Abstraction & Implementation)

Layers

(Logical Distribution)

mol3-ereq

Propagation

. ‘,"n
Technical Siroocids DOM 2 e
. <td>Bar</td> <
Interaction e o Synchronization
L Transformation
A0 e R BB T Aggregation
= ce Splitting
g 55 Interface/Facade
) 95
5 Abstract pAdoet £
= Interaction

Dialog PLUS:

Network Reliability

A ©
Interaction Control E
............. o Peer Addressing
................................. L Concurrency Control
® [W] Transaction Control
Abstraction | . = T (<) Transport Security
of Interaction ‘L:::::,:.f Domain Brazisin a',% Transport Format
Abstraction (e Service Services £ % Network Latency
of Data L E

Domain

Abstract

Data

Technical
TD Data

In an application, it is possible to distinguish 7 logical
layers, each grouped in two ways: on the one hand,
there are the three sequential layer groups Technical/
Abstract/Domain Interaction, Domain Service and
Domain/Abstract/Technical Data, on the other hand,
there are the three nested layer groups Technical
Interaction/Data, Abstract Interaction/Data and
Domain Interaction/Service/Data.

In addition, one can distinguish 4 primary flows in an
application: the Action Flow consequently runs from
top to bottom only because all actions at the top are
triggered by the user (or neighboring systems); the
Error Flow consistently runs only in the opposite
direction, i.e., from the bottom to the top, because
errors, in the worst case, must be reported to the user;
the (domain-specific) Data Flow and the (technical)
State Flow run in both directions because data and
states have to be persisted as well as displayed.

The abstraction of Interaction/Data in the layers
increases from the top/bottom towards the middle, so
most of the functional code of an application is written
there. For the upper/lower layers, one usually massively
relies on Open Source libraries/frameworks.

Nilsson Layersi

Fowler Layerss Brown Layers 7-Layerm

If instead of a logical cut (resulting in an Internal Flow
between the layers) between two layers, one makes a
physical cut (which then results in an External Flow),
i.e., one distributes the application into single
programs on different computers, then the resulting
architecture is called according to the scope and
responsibility of the client.

With Thin Client, only the Technical Interaction is
offloaded to the client, while with Rich Client the entire
user interface (i.e,, all three layers Technical/Abstract/
Domain Interaction) is autonomously offloaded to the
client (usually as a so-called “HTML5 Single-Page-
Application”), with Fat Client there is no more
associated server at all, and with the Standalone
application, there is only one single program.

Questions

@© Whatis the name of the application architecture in
which the entire user interface runs autonomously
on the client, while the server only provides purely
functional services?

© What are the web applications named that
implement a Rich Client architecture?

W ARCHITECTURE

o [TECHNISCHE
L weens Client-Server Architecture TUTI 2

Thin-Client Architecture: Rich-Client Architecture:
the application consists of a single the application consists of both custom
custom Server program only. The Server Client and Server programs. The Client
program renders the Ul mask and keeps program renders the Ul mask and keeps
the entire Ul state on the Server. the entire Ul state on the Client.

Client Run-Time
(Chrome, Firefox, etc)

Front End

Client Program

Data Layer

Network Protocol
(HTTP, WebSocket,
or WebRTC)

Network Protocol
(HTTP only)

Front End

Server Program
i
|

Server Program

Data Layer

Data Layer

Back End
Back End

Server Run-Time
(JVM, Nodejs, etc)

Examples: UL: User Interface RPC/C: Remote Procedure Call / Client-Side Examples:
PHP, JSP, JSF, Nextjs, AC: Application Core RPC/S: Remote Procedure Call / Server-Side W3C HTMLS (Angular, React, Vue),
ASPNET, BSP, etc. . DP: Data Persistance Flash/Flex, Eclipse RCP, etc.
In the Thin-Client Architecture, the application The advantage of this architecture is that the user
consists of a single custom Server program only. This interface is highly responsive, only domain-specific
Server program renders the User Interface Mask and data has to be exchanged between the client and the
keeps the entire state of the User Interface on the server and the server server becomes less of a
Server. bottleneck. The disadvantage of this architecture is
that, if necessary, the client has to be updated explicitly
The advantage of this architecture is that the via an installation procedure.
application can be updated very easily. The
disadvantage of this architecture is that the user Questions
interface reacts sluggishly, and the state of the user
interfaces of all clients must be kept on the server, @ With which Client Architecture does the User
which can make the server a bottleneck. Interface offer the higher responsiveness?
In the Rich-Client Architecture, the application
consists of both custom Client and Server programs.
The Client program renders the User Interface mask
and keeps the entire state of the User Interface on the
Client.

W ARCHITECTURE
7 FUNDAMENTALS

Reference Architecture Blueprint

APIs are intended
to be called directly
o4

Information System Architecture TLTI
% G

}

TECHNISCHE
UNIVERSITAT
MUNCHEN

Blueprint Usage

Example Scenario 1

Thin Client /
“Thick Server”

=
w

Dependency Direction

v v
EE < PC
IC IC IC
e < Interaction Layer \ PC
LC 4
LC 4 .
’ ®
LC |
e [i 1 |
=
=
LC UQ ¢ ﬂ [
b | O
Libraries Common E__,- Data Layer / t Plugins Rich Client =
In case of different Domain domain-driven slicin: technology-driven slicing Closed Layerin:
cnytesperierthe e Case ’ / g’ ’ o “Thin Server” = :

at the facades The facades can be

splitinto logical parts

Component Types:

IC: Interaction Component
SF: Service Facade

SC: Service Component

DF: Data Facade

DC: Data Component

Service Facade (SF) Potential Functionality:
Request Validation, Use-Case Authorization,
Process Orchestration (Dispatching), Data
Splitting/Aggregation/Conversion, Transaction

PF: Plugin Facade

PC: Plugin Component
UC: Utility Component
EC: Entity Component
LC: Library Component

Handling, Run-Time Use-Case Tracing, Result
Caching, etc.

Data Facade (DF) Potential Functionality:
Data Access Authorization, Data Orchestration
(Dispatching), Data Splitting/Aggregation/
Conversion, Transaction Handling, Run-Time
Data Access Tracing, Data Caching, etc.

A (business) Information System usually follows a
stringent component-based reference architecture.
This is represented “full blown” and can be arbitrarily
“slimmed down!

First, this reference architecture consists of 3
substantial Layers: the Interaction Layer with the
(technically cut) components, which provide the I/0-
based interfaces to the user (User Interface) and/or
requesting neighboring systems (via Network
interface), the Service Layer with the (domain-
specifically cut) service components (also called
Application Core) and the Data Layer with the
(technically cut) components that provide the
connection to the own database and/or neighboring
systems to be queried.

Note that the “docking position” of a neighboring
system depends on its roles: if it requests, it docks to
the Interaction Layer; if it is queried, it docks at the Data
Layer. If it happens to have both roles, it docks twice.
The other view is that both the user and the database
can be understood as special “neighbor systems.”

To connect the N Interaction Components (IC) with M
Service Components (SC) a decoupling Service Facade
(SF) is usually inserted. For the same reason, there is
usually also a Data Facade.

responding
sibling system

ﬂ Input/Output Interface

Application Programming
Interface (API)

The Data Model is offloaded to common Entity
Components (EC). Together with possibly shared code,
both live in one Common Slice. Libraries and Plugins
are also offloaded to separate slices, but there are two
major differences: Libraries are passive and provide
their functionality to the application via their interfaces.
Plugins are active and control the application in that
they hook into the application via Service Provider
Interfaces (SPI) of the Plugin Facades.

In the application, there has to be only exactly one
Dependency Direction so that the application (in the
opposite direction of the dependencies) can be built
cleanly. The reference architecture is usually also
instantiated twice in order to design both a Rich Client
and an associated “Thin Server” from it.

Questions

@© With which layer pattern can in an Information
System the Interaction Components be

decoupled from the Service Components?

In which order are the components of an
application built?

W ARCHITECTURE o o TECHNISCHE
e wewenis Reactive System Architecture TUTI:

DEF = Definition CTX Context VAL Values

-
=
IS

Real-time communication Non-blocking input/output
Reactive System Architecture enables in the context of data processing, fast
the realization of Reactive Systems. Digitization, Internet, responses within tight time
Internet of Things (IoT), limits, and continuous
Reactive Systems are in subordinated Systems of Engagement, availability of the provided
interaction with their dominating et e At ites, SEVICE:
environment. They continuously
process endless data streams as smaif REQ | Requirements PRP | Properties
messages, react at any time and
respond within tight time fimits. For Services are efastic and Services run fully
this, they continuously observe their provide high scalability, autonomously, monitor

. A 5 ili themselves, and
environment and adapt their behaviour ad ale ey e .
he current situation provide high fault automatically adapt to
to the cul 8 tolerance. changes in the
environment.

Stay Responsive Accept Uncertainty Embrace Failure Assert Autonomy Tailor Consistency Decouple Time Decouple Space Handle Dynamics

Always respond in Build reliability Expect things to go Design components that Individualize consistency Process asynchronously Create flexibility by Continuously adapt to

atimely manner. despite unreliable wrong and design for act independently and per component to balance to avoid coordination embracing the varying demand and
foundations. resilience. interact collak ivel ilability and perfc and waiting. network. resources.

Patterns & Paradigms

DAT | Data

Semantical Event,
Small Message,
Endless Stream.

ARC Architecture COM Communication STY | Style

Functional Programming,
Asynchronous
Programming.

Microservices, Cloud-Native Asynchronous

Architecture (CNA), Event- Communication, Non-

Driven Architecture (EDA). Blocking 1/0, Sequence,
Push, Backpressure, Quality
of Service (QoS).

EXE | Execution INFInfrastructure PRC | Processing ASY Asynchronism

Parallelization, Message Queue (MQ), Load
Concurrency, Actors, Balancer, Reverse Proxy,
Threads, Thread-Pool, Service Mesh, Virtual
Event-Loop. Private Network (VPN).

Callback, Promise/Future,
Observable, Publish &
Subscribe.

Complex Event Processing
(CEP), EAIl Patterns, Stream
Processing (map, flatMap,
filter, reduce), Event
Sourcing.

Reactive System Architecture enables the realization Questions

of Reactive Systems. Reactive Systems are in

subordinated interaction with their dominating © Which two essential requirements do Reactive
environment. They continuously process endless data Systems fulfill?

streams as small messages, react at any time and

respond within tight time limits. For this, they © What characterizes Reactive Systems in respect to
continuously observe their environment and adapt their data processing?

their behaviour to the current situation.

Reactive Systems are primarily used in the context of
real-time communication where services are provided,
which have to be elastic and provide high scalability,
and which have to be reliable and provide high fault
tolerance.

	Questions
	Questions
	Questions
	Questions
	Questions
	Questions

