TECHNISCHE
TUTT voveesrs
MUNCHEN

Software Engineering in der industriellen Praxis (SEIP)

Dr. Ralf S. Engelschall

ARCHITECTURE
a2 FUNDAMENTALS

Declarative Languages

Formal Languages

Express the target state
and let the machine figure out the steps.

Markup Languages Configuration Languages

Write text intermixed with |
markup information. :.'.'.’.
foo bar baz
 quux

Examples:
Wiki, Markdown, AsciiDoc, SGML, HTML,
TeX, R[un]off, reStructuredText, RTF

Rule Languages Constraint Languages

Express logic and semantic
through complex rules.

foo(x, y) <— bar(x, y, z)
AND x < 42 AND z >= 10

Examples:
SQRL, Datalog/RuleML,
OWL/SWRL, RIF

Query Languages Validation Languages

Retrieve information through
paths and expressions.

// foo / bar [@baz ==
"xxx" && @quux > 10]

Examples:
Glob, RegExp, CSS Selector, XPath, YARA,
GraphQL, SQL, SPARQL, Cypher, GQL, ASTq

solution approach:
execution control:

Express complex textual
configurations.

foo bar quux { baz;
quux id 7; baz }

Examples:
INI, XML, SXML, JSON,
YAML, TOML, HCL

Find solutions for
complex constraints.

1))@(“
foo @ bar(X, Y),

baz(X, Y, _) ==> quux.

Examples:
MiniZinc, CHR,
OCL, Rego, Z3.

Parse and validate complex
textual information.

foo ::= “bar(#” (?:
[0-9a-fA-F1{2})+ “)”

Examples:
RegExp, Ducky, BNF,
PEG, RELAX NG

automatically, non-obvious
automatically, pre-defined

performance optimization: automatically, pre-defined

Express the steps

TECHNISCHE
m UNIVERSITAT
MUNCHEN

o

how the machine has to reach the target state.

Shell Languages Programming Languages

Automate execution of
system commands.

foo —x 2>&1 | bar -y
——quux <(cat *.cf)

Examples:
Korn-Shell, Bourne-Shell, Bash, C-Shell,
Batch-Script, PowerShell, AppleScript, DCL

Text-Processing Languages Macro Languages

Manipulate texts through % btu‘
transformations. ko quk

/~foo/,/bar.xbaz/
s/quux\ ([0-9]%\)/foo\1/g

Examples:
ed, ex, sed, AWK,
TXR, XSLT, JSLT

Expression Languages Template Languages |

Expand path, arithmetic, and _S(x)
boolean expressions.

{{ foo.bar[x].baz[42]
.quux + 1 }}

Examples:
JQ, YQ, MozJEXL, MathML,
JUEL, SpEL

Execute complex a _—
algorithmic steps. 3.—

for (let i = 0; i < 10;
i++) foo(i, 42)

Examples:
JavaScript, TypeScript, Scala, Kotlin, Java,
C#, C/C++, Rust, Go, Python, Perl, Ruby, Lua

Pre-process texts with SE
macros.

define(foo', "bar$lbaz')
foo(quux)bar

Examples:
m4, GPP, CPP,
Zoem, ProMac

T3
23
@
= >
o=
[a)}
o
>

f

Expand complex oo
text fragments. o

% for k, v in items %}

{{k}}: {{v}}{% endfor %}

Examples:
Pug, Nunjucks, Handlebars,
Mustache, Jinja, Jsonnet

solution approach: manually, obvious Examples:

. I Iy fi ined essential
execution control: manually, fine-graine recommended
performance optimization: manually, fine-grained alternative

W ARCHITECTURE

7 FUNDAMENTALS Tech nology PI atform S 'I'I.r" LTAJAEI\E\ZENEI%%&

high-level,
less difficult

Appllcatlon

Infrastructure
System

Loader & Standard-

low-level,
more difficult

Remember:

TooI
L|bra ry
Framework

Operating Kernel Subsystem
System

. secondary focus of platform
. primary focus of platform (ancient)
. primary focus of platform (current)

Library

A Technology Platform is less about choosing a particular programming language and
more about choosing a particular ecosystem for targeting a particular level of software!

Opinionated Recommendation (as of 2022):

Business: Scala, Kotlin, TypeScript, AssemblyScript
Infrastructure: Go, Rust, Scala, Kotlin, TypeScript
Operating System (UL): Rust, Go

Operating System (KL): C, C++, Rust

Typical Computing Devices (as of 2022):

Intel/AMD x64: Personal Computer (PC)
ARM/Cortex/Apple 64: Raspberry PI, BeagleBone, ROCKSPro64, iMac
RISC-V 64: Beagle-V, HiFive Unmatched

MIPS 64: Compex WPJ344

Intel/A

ABAP

=
Q.
(@)
(Vp)
()
<
=
-
o
=
(9]
(V)
©
>
1]
-/

NET/C# (F#, VB.NET)
Swift (Objective-C)

Windows macOS GNU/Linux FreeBSD

e |
e |

Server

4N dv |

p
443 (50-£0'1202) 0L | oI uonensyl eo1ceio

Lga 01 pasuadr PAAGIY0Id UondNpoiday paziioyineun
11,
11eY2s136U3 S Jley 1d Aq 120Z-020C PRIOYINY “(€2-£0-1202) 0°L'L UOISISA :USIUOD) [Bnd3||31u]

U3 'S JeY Ud L20Z-0207 © 1Yl

'AUO S1X31U02 3INID3| 2DUBIDS J2INAWOD) Ul UOHINPOIdSI J0J (NN L) USUDPUNA RUSISAIUN SUDSIU
PanIasay sybIy |y ‘<wodjeydsjabua//dny> jjeydsish

W ARCHITECTURE

/g FUNDAMENTALS Tech nol ogy Sta ck 'I'”'" LTAJAE'\E\Z%%E’T&

Access &

XX Testing Authorization

\ibraries (V)

Identity & Operating
Authentication System

Debugging gameworks (FRM//

Message Runtime

Ly Queue Container

Language (LG)

Run-Time (RT)

it Cloud
Edltmg Computing

Application
Building Landscape

Integration

/>]

Network
Topology

Logging,

]
LA A PaCkaging Attention: H 1 Challenge: Tradng’ eee
Invasive to g | Cover Functional and Monitori ng
v proi:i’r;\:;mg ! f Non-F}Jnctional v
Software Engineering Tools E E Requirements System Engineering Tools
< ' : ‘4 Technology Platform i > '
---------------] —]
I:Eevglopment E E market scope / * / 5-15Y E E Platform Datacenter
nvironment F f i i
Vi E E Technology Stack — M;)acltlsnz creleton E E Environment Environment
) —)
E ‘4 company scope / 5-10x / 1-5Y » E
] . .]
54 Application »
domain scope / 1x/ -
Software Architecture > < System Architecture >
Enterprise Blueprints Enterprise Blueprints
e - P oo . —— P >

vl 13

11eYds[36U3 S Jley 1A Aq 6102-£ 10T PRIOYINY ‘(£Z-01-6107) S'0'L UOISIDA :USIU0D) [end3|[31u]

()L
DSBS SB[CLIOSTIELPSI3BUS, A [SUSSIBOUS S JIPH 10 1202 107 0 IIBIAdO- (50-01-1207) 90| UoKsisA uoneitsnij feotydein

*A|UO SIX23U0D 2IN1D3| 2U1S J3INAWIO) Ul UoRINPOIdaI 10} (ML) USLPUNIA JBHSISAIUN SYDSIUYI3)| 03 pasuadr] PNl uononpoiday pazuoyineun

W ARCHITECTURE
7 FUNDAMENTALS

IT InterfaceTheme

Style Reset, Shape, Color, Gradient,
Shadow, Font, Icon

Bootstrap TypoPRO, FontAwesome, Normalize

18 Interface Internationalization

Text Internationalization (118N).

VuelS vue-i18next, 18Next

IW Interface Widgets

Icon, Label, Text Paragraph, Image, Form, Text-Field, Text-Area,
Date Picker, Toggle, Radio Button, Checkbox, Select List, Slider,
Progress Bar, Hyperlink, Popup Menu, Dropdown Menu, Toolbar,
Tooltip, Tab, Pill, Breadcrumb, Pagination, Badge, Alert, Panel,
Modal, Table, Scrollbar, Carousel

Bootstrap Select, SlickGrid, ...

DC Data Conversion

Value Formatting, Value Parsing,
Localization (L10N).

VuelS Moment, Numeral, Accounting, ...

IL Interface Layouting

Responsive Design, Media Query, Frame, Grid,
Padding, Border, Margin, Alignment, Force,
Magnetism

Bootstrap Swiper, jQuery Page, ...

DB DataBinding

Reactive, Observer, Unidirectional,
Bidirectional, Incremental

VuelS

IE Interface Effects

Transition, Transformation, Keyframes,
Easing Function, Sound Effect, Physics

VuelS Animate.css, DynamicJS, Howler, ...

PM Presentation Model

ParameterValue, Command Value,
State Value, Data Value, Event Value,
Value Validation, Presentation Logic

ComponentSS

Il Interface Interactions

Mouse, Keyboard, Touchscreen, Gesture,
Clipboard, Drag & Drop

VuelS Hammer, Mousetrap, Dragulg, ...

DN Dialog Navigation

Deep Linking, Routing,
Dialog Flow

ComponentJS Director, URLjs

IS Interface States

Rendered, Enabled, Visible, Focused,
Warning, Error, Floating

VuelS

DA Dialog Automation
Dialog Macros, Click-Through, Smoke Testing.

ComponentS ComponentJS-Testdrive

IM Interface Mask

Markup Loading, Markup Generation,
Virtual DOM, Text, Bitmaps, Vectors,
2D/3D Canvas, Accessibility

VuelS jQuery-Markup, D3, Snap.svg, FabricJs, ...

DC Dialog Communication

Service, Event, Model, Socket,
Hooks

Component)S Latching

$4,234.56
2016-01-01

Rich-Client Aspects

T

DL Dialog Life-Cycle

Component States,
Component State Transitions.

Component)S

TECHNISCHE
UNIVERSITAT
MUNCHEN

DS Dialog Structure

Component, Model/View/Controller Roles,
Hierarchical Composition

ComponentS

ComponentJS-MVC

SP State Persistence

Local Storage, Cookies,

Caching

(none)

Storejs, JS-Cookie

BM Business Model

Entity, Field, Relationship,
Universally Unique Identifiers (UUID)

(none)

DataModelJS, Pure-UUID

UA Use-Case Authorization

User Experience, Dialog Restriction,
User, Group, Role, Use-Case, Data, Access.

(none)

CN Client Networking

Request/Response, Synchronization,
Push, Pull, Pulled-Push, REST, GraphQL,
Authentication, Session.

(none)

Axios, Apollo Client

ED Environment Detection

Runtime Detection,
Feature Detection.

(none)

Modernizr, FeatureJS, jQuery-Stage

=)
N
(9]

W ARCHITECTURE
7 FUNDAMENTALS

ED EnvironmentDetection

Detect the run-time environment, like underlying
operating system, execution platform, network
topology, feature toggles, etc.

Node process, syspath

Thin-Server Aspects

SN Server Networking

Listen to network sockets, accept connections
and manage request/response and message
communication.

HAPI hapi-plugin-websocket, ws

CN dlient Networking

Provide mechanisms to connect to peers over
the network and perform request/response
and/or publish/subscribe communication.

(none) Axios, MQTT,js, ws

T

TECHNISCHE
UNIVERSITAT
MUNCHEN

AP Argument Parsing

Parse options and arguments of the
Command-Line Interface (CLI) to bootstrap
application parameters.

(none)

Pl PeerInformation

Determine unique identification and add-on
information about the client peer.

HAPI hapi-plugin-peer, geoip

TS TaskScheduling

Schedule and execute recurring tasks
independent of regular I/O operations.

(none) node-scheduler

CP Configuration Parsing

Load and parse directives from configuration
file to bootstrap application parameters.

(none) js-YAML

SH Session Handling

Manage secured per-connection sessions to
keep state between communication requests
and/or client sessions.

HAPI

ET ExecutionTracing

Provide mechanisms for tracing the execution
by logging event and measurement information
at certain points of interest.

Microkernel Winston

PD Process Daemonizing

Detach from the startup terminal and host
process in order to run fully independently.

(none) daemonize2

UA User Authentication
Determine and validate the unique identity

of the user communicating over the current
network connection.

HAPI JWT, Passport

DA Database Access

Map in-memory domain entities onto data store
dependent persistent data structure.

Sequelize GraphQL-Tools-Sequelize

PM Process Management

(Pre-)fork child processes and/or threads of
execution and monitor and control them
during the life-cycle of the application.

(none) cluster, nodemon

RV Request Validation

Validate the syntactical and semantical
compliance of the requests and sanitize
the requests.

HAPI Joi, DuckyJS

DC Database Connectivity

Locally or remotely connect the database
access layer to the underlying data store.

Sequelize sqlite3, pg

CM Component Management

Structure the code into components, instanciate
them under run-time and manage themina
stateful component life-cycle.

Microkernel (none)

RP Request Processing

Process the request by dispatching execution
according to the provided request and
determined context information.

HAPI GraphQLjs

CC Component Communication

Provide inter-component communication
mechanisms like events, hooks, registry, etc.

Microkernel Latching

RA Role Authorization

Determine whether the role of the current user
is allowed to execute the current request.

(none) GraphQL-Tools-Sequelize

DS Database Schema

Create, update or downgrade the data schema
inside the underlying data store.

Sequelize (none)

DB Database Bootstrapping

Create, update or downgrade both mandatory
bootstrapping and optional domain-specific
data inside the underlying data store.

Sequelize

-_—
N
o

W ARCHITECTURE
7 FUNDAMENTALS

Software Deployment TLTI &

AMA Bare Amalgamation

Manually deploy all applications into a single,
shared, and unmanaged filesystem location.
Dependencies are resolved manually.
Examples: Windows Fonts, Unix 1990th
/usr/local.

Pro: simple deployment
Con: incompatibilities, hard uninstallation

Application

Applic
ation

Applic
ation

Applic
ation

Application

Amalgamation

UHP Unmanaged Heap

Manually deploy all applications into

CON Container Image

Bundle an application with its stripped-down
OS dependencies and run-time environment
into a container image. Examples: Docker/
ContainerD, Kubernetes/CRI-O, Windows
Portable Apps.

Pro: independent, simple deployment
Con: fewer variations, no dependencies

multiple, distinct, and unmanaged filesystem
locations. Dependencies are resolved
manually. Examples: macOS *.app,

OpenPKG LSYNC.

Applic
ation

Heap

Applic
ation

Heap

Applic
ation

Heap

Pro: simple deployment, easy uninstallation
Con: no repair mechanism

MHP Managed Heap

Let individual installers deploy applications
into multiple, distinct, and managed
filesystem locations. Dependencies are
manually resolved or bundled. Examples:
macOS *.pkg, Windows MSI, InnoSetup.

Applic
ation

Heap

Applic
ation

Heap

Applic
ation

Heap

Pro: easy uninstallation, repairable
Con: requires installer, diversity, no dep.

PKG Managed Package

Installer Installer Installer

Let a central package manager deploy all
applications into a single, shared, and
managed filesystem location. Dependencies
are automatically resolved. Examples: APT,
RPM, FreeBSD pkg, MacPorts, Gradle, NPM.

Applic
ation

Package

Applic
ation

Package

Applic
ation

Package

Pro: easy uninstall., repairable, dependencies
Con: PM. pre-installation, PM. single instance

Package Manager

STK Package/Container Stack

Establish an application out of multiple
Managed Packages. Examples: OpenPKG
Stack, Docker Compose, Kubernetes/
Kompose, Kubernetes/Helm.

Pro: independent, flexible
Con: overhead

VMI

Bundle an application with its full OS
dependencies and run-time environment
into a virtual machine image and deploy and
execute this on a hypervisor. Examples:
VirtualBox, VMWare, HyperV, Parallels, QEMU.

Pro: all-in-one, independent
Con: overhead, sealed, inflexible

APP Solution Appliance

Bundle an application with its full OS
dependencies, run-time environment and
underlying hardware. Examples: AVM Fritz!
Box, SAP HANA.

Pro: all-in-one, independent
Con: expensive, sealed, inflexible

Application

Container Image

Application

Virtual Machine Image

Application

Virtual Machine Image

Application

Solution Appliance

PanIasay sybiy ||y ‘<wodleydsjsbusy//dnl

'AJUO S1X31U0D 21N123] 9UIDS J2INdW0?) Ut UoidNpoid

W ARCHITECTURE

L wewas Cloud Computing Resources TUTI

Public Cloud

ON-DEMAND

Provider-Hosted

MULTI-TENANCY

MEASURED SERVICE

AUTOMATABLE ELASTICITY

NETWORK ACCESS PAY-PER-USE

SELF-SERVICE Community Cloud

Private Cloud

outside-inside relationship
outside-inside relationship

On-Premises

logically / chronologically related
logically / chronologically related

1onpoid:
bua//dnt

Cloud Approaches what?

e.g. AWS Lambda e.g. AWS EKS e.g. AWS ECS & Fargate e.g. AWS EC2
e.g. Azure Functions e.g. Azure AKS e.g. Azure Container Apps e.g. Azure Virtual Machines
(think: Stateless Microservice) (think: Kubernetes) (think: Docker) (think: Virtual Machine)

Service Mesh
Service Events
Application Runtime
Tools & Libraries

=
=8
A
o
3
7
=
E

&
=
B
2
o
=
I
a

'AJUO $1X31U0D 2UN1D3| 3DUIDS JAINdWo)) ul

ELE!
“Serverless
Computing”

technical layers

Container Runtime
Operating System
Computer
Network

FaaS

Function
as a Service

PaaS CaaS

Platform Container
as a Service as a Service

laaS

Infrastructure
as a Service
Duration: FunconCall M . Continuously |
Interfaces: Proprietary

Standardized

(think: OCI) (think: PC)

W ARCHITECTURE
7 FUNDAMENTALS

Cloud-Native Architecture

Reference Architecture Blueprint

Systems of
Engagement

6 Users

$

Systems of %
Record

Developers

Name

Resolution
(CoreDNS)

Caching

Proxy
(Squid)

Gateway
(Traefik)

Authentication

& Authorization
(Dex + SPIRE + Opa)

Version

Control
(Gitea + Git)

Enterprise

Integration
(WSO2 ESB)

Service
Registry

(Kubernetes)

Process
Manager

(Kubernetes)

Message

Queue

(NATS + NATS
Streaming Server)

Session
Store

(Corvus + Redis)

Authentication

& Authorization
(SPIRE Agent)

Microservice

(Frontend)

Service Microservice

(Core)

Registry

(Kubernetes)

Process

Manager
(Kubernetes + CRI-0)

Microservice
(Backend)

Microservice

(Frontend)

Microservice
(Core)

Microservice
(Backend)

Microservice

Microservice

Microservice

Continuous
Delivery

(Drone)

Artifact
Repository

(Nexus)

(Cross)

(Cross)

Metric

Store

(InfluxDB-Relay +
InfluxDB)

(Cross)
Event

Store
(Jaeger)

Credential

Store
(Vault + Notary)

<

(CockroachDB)

Entity
Store

Graph

Store
(Neo4J)

Full-Text

(ElasticSearch)

Store

(Tendermint)

Store

Blockchain

BLOB

Store
(Minio)

File-Tree

Store
(GlusterFS + XFS)

D Common Group

D (Virtual) Machine

- Platform Application (HA)
() Microservice Group [Jll Foreign Application (non-HA)
- Microservice Application (HA)

Major Approach Idea:

With Cloud-Native Architecture one maximizes the
leverage of PaaS-like, high-available, and scalable Cloud
services at the level of Software- and Systems-Architecture

for a whole set of applications.

Major Design Criterias:

1. Targets DevOps approach.

2. Targets Continuous Delivery process.

3. Targets Microservice Architecture.

4. Targets Container Image deployment.

5. Targets Service Mesh communication.

6. Targets Server Cluster setup.

7. Provides High-Availability of Service Platform

8. Provides High-Availability of Application Microservices.
9. Provides Scalability of Application Microservices.

TECHNISCHE
UNIVERSITAT
MUNCHEN

CNCF Cloud-Native Definition 1.0

Cloud-native technologies empower organizations to build and
run scalable applications in modern, dynamic environments such
as public, private, and hybrid clouds. Containers, service meshes,
microservices, immutable infrastructure, and declarative APIs
exemplify this approach. These techniques enable loosely coupled
systems that are resilient, manageable, and observable. Combined
with robust automation, they allow engineers to make high-
impact changes frequently and predictably with minimal toil.

Practical Cluster Setups

Standard Cluster Setup (5+1+N Machines):

e

L)

L)

L)

o)

LT

e]

LI

L)

LI

nan - o

Partitioned Cluster Setup (5x2+1+N Machines):

Loy

LI

L0

L0

L)

L]

Loy

LI

Loy

LI

I T

TN 4V |

oyneun
iydelny

2) 7T’ L UOISI3A U1UOD) [2N1D3|[21U]

0

-Z207) 9’| UOIsIaA :uonensn|

pasuad1] PANGIYOId UoRINPOIdaY pazii

bua//dnt

'AJUO S1X31U0D 21N123] 9IUIDDS JINdWO?) Ul UoidINpoIds.
PanIasay syBIY |y ‘<wodfjeyds|al

W ARCHITECTURE
f FUNDAMENTALS

fﬂo oge TECHNISCHE
Offline Capability TUTL

GOAL CONTEXT

Exceptional
UX User Experience

Provide exceptional User Experience
by taking temporary client/server
network offline situations into
account and establish trust in the
offline capability of the application.

CHALLENGES

Virtual (Private) Networks

Network offline situations caused
by the explicit on/off toggling of
overlayed Virtual (Private)
Networks by the user.

Switched
MNC Mobile Network Cells

Network offline situations caused
by the implicit switching between
the mobile network cells by the
device during mobile use.

Network Components

Network offline situations caused
by the failure of any network
components between the client
and server tiers of an application.

IS Business
Information Systems

Client/sever applications which
drive business processes through
use-cases, based primarily on the
editing, storing, and retrieving of
information.

Offline
L2 Read

During offline phase, client allows
read-operations, but no write-
operations, to locally cached data.

ess Layer Proxy
Data Acbcoeb Storage AP

Offline
L1 Aware

During offline phase, client
explicitly disables user interface
and shows modal error message.

Rich-Client

Web Network Information API

Offline
LO Unaware

During offline phase, client
implicitly fails with
network errors.

Notice: each level

increases user experience, TWWC“‘EM
but also increases
technical complexity.

MATURITY LEVELS

cc Cloud

Computing

On-demand availability of
computing resources, especially
data storage and computing
power, without direct active
management by the customer.

Hint: you cannot solve offline
scenarios at the technical
level if your use-cases are not
already aligned to them,

L5 Offline
Transactional Read / Write

During offline phase, client allows
non-atomic (transactional) read/
write-operations to any locally
cached data.

SAGA
Compewsatvon

Offline
L4 Read & Atomic Write

During offline phase, client allows
atomic read/write-operations to
any locally cached data.

CRDT, Event Sourcing
CQRS, Optimistic Locking

L3 Offline
Read & User-Exclusive Write

During offline phase, client allows
atomic read-operations to any,
and write-operations to user-

exclusive, locally cached data. .
isation

Data Synchronisat!
Last-Win Conflict Resolution

vel [

paniasay sBIY ||y ‘<Wod|eyds|abus,/dny> j[eydsebul s ey 1a €207 © Jq%u*do) ‘(01-01-€207) 0'0’ L UOISIaA :uonensnj| [esiydes

UURLIYY SeRIPUY PUR I3JRYDS [3BYDIW JOHOM UO paseq ‘fleydsjabud S Jiey 1a Aq €20 PRIOLNY (01-01-€202) 0'0'L UOISISA JUIU0D [end3[Iau]

*AjU0 S1X21U02 31M1D3| 32U3IIS J3INdWIOD) Ul UoNINPoIdal 1(3 (WN.L) USUPUNA 1BIISISAIUN UDSIUYIR| 01 pasuadr] PRIl uononpoiday pazuoyineun
i)

	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1

