
Software Engineering in der industriellen Praxis (SEIP)

Thank you for �ying Industry Airlines.
Lecture End

To be continued.
Lecture Gap

Let’s have a meal!
LUNCH

Let’s breathe deeply!
BREAK

Fasten your seatbelts, please.
Lecture Start

Dr. Ralf S. Engelschall

Express the target state
and let the machine !gure out the steps.

Declarative Languages

Express the steps
how the machine has to reach the target state.

Imperative Languages

Write text intermixed with
markup information.

foo bar baz
 quux

Examples:
Wiki, Markdown, AsciiDoc, SGML, HTML,
TeX, R[un]o", reStructuredText, RTF

Markup Languages

Express complex textual
con!gurations.

foo bar quux { baz;
quux id 7; baz }

Examples:
INI, XML, SXML, JSON,
YAML, TOML, HCL

Con!guration Languages

Express logic and semantic
through complex rules.

foo(x, y) <- bar(x, y, z)
AND x < 42 AND z >= 10

Examples:
SQRL, Datalog/RuleML,
OWL/SWRL, RIF

Rule Languages

Find solutions for
complex constraints.

foo @ bar(X, Y),
baz(X, Y, _) ==> quux.

Examples:
MiniZinc, CHR,
OCL, Rego, Z3.

Constraint Languages

Retrieve information through
paths and expressions.

// foo / bar [@baz ==
"xxx" && @quux > 10]

Examples:
Glob, RegExp, CSS Selector, XPath, YARA,
GraphQL, SQL, SPARQL, Cypher, GQL, ASTq

Query Languages

Parse and validate complex
textual information.

foo ::= “bar(#” (?:
[0-9a-fA-F]{2})+ “)”

Examples:
RegExp, Ducky, BNF,
PEG, RELAX NG

Validation Languages

Automate execution of
system commands.

foo -x 2>&1 | bar -y
--quux <(cat *.cf)

Examples:
Korn-Shell, Bourne-Shell, Bash, C-Shell,
Batch-Script, PowerShell, AppleScript, DCL

Shell Languages

Execute complex
algorithmic steps.

for (let i = 0; i < 10;
i++) foo(i, 42)

Examples:
JavaScript, TypeScript, Scala, Kotlin, Java,
C#, C/C++, Rust, Go, Python, Perl, Ruby, Lua

Programming Languages

Manipulate texts through
transformations.

/^foo/,/bar.*baz/
s/quux\([0-9]*\)/foo\1/g

Examples:
ed, ex, sed, AWK,
TXR, XSLT, JSLT

Text-Processing Languages

Pre-process texts with
macros.

define(`foo',`bar$1baz')
foo(quux)bar

Examples:
m4, GPP, CPP,
Zoem, ProMac

Macro Languages

Expand path, arithmetic, and
boolean expressions.

{{ foo.bar[*].baz[42]
.quux + 1 }}

Examples:
JQ, YQ, MozJEXL, MathML,
JUEL, SpEL

Expression Languages

Expand complex
text fragments.

{% for k, v in items %}
{{k}}: {{v}}{% endfor %}

Examples:
Pug, Nunjucks, Handlebars,
Mustache, Jinja, Jsonnet

Template Languages

solution approach: automatically, non-obvious
execution control: automatically, pre-de!ned
performance optimization: automatically, pre-de!ned

solution approach: manually, obvious
execution control: manually, !ne-grained
performance optimization: manually, !ne-grained

Examples:
essential

recommended
alternative

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.5 (2020-10-17), Authored 2019-2020 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1..1.1 (2021-07-19), Copyright ©

 2019-2021 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
12.1

Formal Languages

Application

Tool

Library

Framework

Application

Tool

Library

Framework

Run-Command

Tool

Library

Loader & Standard-Library

Kernel Subsystem

Device Driver

Business

Infrastructure

Operating
System

(User-Land)

Operating
System

(Kernel-Land)

Ja
va

 (
Ko

tli
n,

 S
ca

la
)

Ja
va

Sc
rip

t
(T

yp
eS

cr
ip

t)

C+
+

Ru
st

G
o

Py
th

on

Ru
by

Pe
rl

Er
la

ng
 (

El
ix

ir)

C

.N
ET

/C

 (F
#,

 V
B.

N
ET

)

Sw
ift

 (
O

bj
ec

tiv
e-

C)

AS
M

lo
w

-le
ve

l,
m

or
e

di
!

cu
lt

hi
gh

-le
ve

l,
le

ss
 d

i!
cu

lt secondary focus of platform

primary focus of platform (ancient)

primary focus of platform (current)

Remember:
A Technology Platform is less about choosing a particular programming language and
more about choosing a particular ecosystem for targeting a particular level of software!

Opinionated Recommendation (as of 2022):
Business: Scala, Kotlin, TypeScript, AssemblyScript
Infrastructure: Go, Rust, Scala, Kotlin, TypeScript
Operating System (UL): Rust, Go
Operating System (KL): C, C++, Rust

PH
P

AB
AP

(A
ss

em
bl

yS
cr

ip
t)

W
AS

M

Windows macOS GNU/Linux FreeBSD

Intel/AMD x64

 ARM/Cortex/Apple 64

RISC-V 64

MIPS 64

Desktop

Embedded

Server

Typical Computing Devices (as of 2022):
Intel/AMD x64: Personal Computer (PC)
ARM/Cortex/Apple 64: Raspberry PI, BeagleBone, ROCKSPro64, iMac
RISC-V 64: Beagle-V, HiFive Unmatched
MIPS 64: Compex WPJ344

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.1.0 (2021-07-23), Authored 2020-2021 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.1.0 (2021-07-23), Copyright ©

 2020-2021 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
12.3

Technology Platforms

Run-Time (RT)

Language (LG)

Standard Library (STD)

Technology Platform

Technology Stack

Application

market scope / * / 5-15Y

company scope / 5-10x / 1-5Y

domain scope / 1x / -

Challenge:
Cover Functional and

Non-Functional
Requirements

Attention:
Invasive to

programming
model

Access &
Authorization

Identity &
Authentication

Message
Queue

Data
Store

Application
Landscape
Integration

Logging,
Tracing,

Monitoring

Testing

Debugging

Linting

Packaging

EditingVersion
Control

Software Architecture System Architecture

Building

Issue
Tracking

Continuous
Integration

Online
Documenting

…

…

Operating
System

Cloud
Computing

Runtime
Container

Network
Topology

…

…

Focus of
Walking Skeleton

Software Engineering Tools System Engineering Tools

Enterprise Blueprints Enterprise Blueprints

Platform
Environment

Datacenter
Environment

Libraries (LIB)

Application (APP)

Development
Environment

Frameworks (FRW)

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.5 (2019-10-27), Authored 2017-2019 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.6 (2021-10-05), Copyright ©

 2017-2021 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
12.4

Technology Stack

Environment DetectionED
Runtime Detection,
Feature Detection.

(none) Modernizr, FeatureJS, jQuery-Stage

Interface WidgetsIW
Icon, Label, Text Paragraph, Image, Form, Text-Field, Text-Area,
Date Picker, Toggle, Radio Button, Checkbox, Select List, Slider,
Progress Bar, Hyperlink, Popup Menu, Dropdown Menu, Toolbar,
Tooltip, Tab, Pill, Breadcrumb, Pagination, Badge, Alert, Panel,
Modal, Table, Scrollbar, Carousel

Bootstrap Select2, SlickGrid, ...

Interface ThemeIT
Style Reset, Shape, Color, Gradient,
Shadow, Font, Icon

Bootstrap TypoPRO, FontAwesome, Normalize

Interface LayoutingIL
Responsive Design, Media Query, Frame, Grid,
Padding, Border, Margin, Alignment, Force,
Magnetism

Bootstrap Swiper, jQuery Page, ...

Interface E�ectsIE
Transition, Transformation, Keyframes,
Easing Function, Sound E�ect, Physics

VueJS Animate.css, DynamicJS, Howler, ...

Interface InteractionsII
Mouse, Keyboard, Touchscreen, Gesture,
Clipboard, Drag & Drop

VueJS Hammer, Mousetrap, Dragula, ...

Interface StatesIS
Rendered, Enabled, Visible, Focused,
Warning, Error, Floating

VueJS (none)

Interface MaskIM
Markup Loading, Markup Generation,
Virtual DOM, Text, Bitmaps, Vectors,
2D/3D Canvas, Accessibility

VueJS jQuery-Markup, D3, Snap.svg, FabricJS, ...

Data ConversionDC
Value Formatting, Value Parsing,
Localization (L10N).

VueJS Moment, Numeral, Accounting, ...

Business ModelBM
Entity, Field, Relationship,
Universally Unique Identi�ers (UUID)

(none) DataModelJS, Pure-UUID

Interface Internationalization18
Text Internationalization (I18N).

VueJS vue-i18next, I18Next

State PersistenceSP
Local Storage, Cookies,
Caching

(none) Store.js, JS-Cookie

Client NetworkingCN
Request/Response, Synchronization,
Push, Pull, Pulled-Push, REST, GraphQL,
Authentication, Session.

(none) Axios, Apollo Client

Use-Case AuthorizationUA
User Experience, Dialog Restriction,
User, Group, Role, Use-Case, Data, Access.

(none) (none)

Dialog AutomationDA
Dialog Macros, Click-Through, Smoke Testing.

ComponentJS ComponentJS-Testdrive

Data BindingDB
Reactive, Observer, Unidirectional,
Bidirectional, Incremental

VueJS (none)

Presentation ModelPM
Parameter Value, Command Value,
State Value, Data Value, Event Value,
Value Validation, Presentation Logic

ComponentJS (none)

Dialog NavigationDN
Deep Linking, Routing,
Dialog Flow

ComponentJS Director, URI.js

Dialog CommunicationDC
Service, Event, Model, Socket,
Hooks

ComponentJS Latching

Dialog Life-CycleDL
Component States,
Component State Transitions.

ComponentJS (none)

Dialog StructureDS
Component, Model/View/Controller Roles,
Hierarchical Composition

ComponentJS ComponentJS-MVC

!"

#$%

"

Licensed to Augsburg U
niversity for reproduction in Com

puter Science lecture contexts only..
Licensed to Technische U

niversität M
ünchen (TU

M
) for reproduction in Com

puter Science lecture contexts only.
Licensed to m

sg system
s ag for reproduction in m

sg Applied Technology Research training contexts only.

Ra
lf S

. Engelschall Signature Series Orig
in

al

Intellectual Content: Version 1.1.5 (2020-07-24), Authored 2015-2020 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.2.5 (2020-07-24), Copyright ©

 2015-2020 D
r. Ralf S. Engelschall <

http://engelschall.com
>

, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
12.5

A
F

Rich-Client Aspects
1 2 3

Argument ParsingAP
Parse options and arguments of the
Command-Line Interface (CLI) to bootstrap
application parameters.

(none) yargs

Environment DetectionED
Detect the run-time environment, like underlying
operating system, execution platform, network
topology, feature toggles, etc.

Node process, syspath

Con�guration ParsingCP
Load and parse directives from con�guration
�le to bootstrap application parameters.

(none) js-YAML

Process DaemonizingPD
Detach from the startup terminal and host
process in order to run fully independently.

(none) daemonize2

Process ManagementPM
(Pre-)fork child processes and/or threads of
execution and monitor and control them
during the life-cycle of the application.

(none) cluster, nodemon

Component ManagementCM
Structure the code into components, instanciate
them under run-time and manage them in a
stateful component life-cycle.

Microkernel (none)

Component CommunicationCC
Provide inter-component communication
mechanisms like events, hooks, registry, etc.

Microkernel Latching

Server NetworkingSN
Listen to network sockets, accept connections
and manage request/response and message
communication.

HAPI hapi-plugin-websocket, ws

Execution TracingET
Provide mechanisms for tracing the execution
by logging event and measurement information
at certain points of interest.

Microkernel Winston

Client NetworkingCN
 Provide mechanisms to connect to peers over
 the network and perform request/response
 and/or publish/subscribe communication.

(none) Axios, MQTT.js, ws

Task SchedulingTS
Schedule and execute recurring tasks
independent of regular I/O operations.

(none) node-scheduler

Database AccessDA
Map in-memory domain entities onto data store
dependent persistent data structure.

Sequelize GraphQL-Tools-Sequelize

Database ConnectivityDC
Locally or remotely connect the database
access layer to the underlying data store.

Sequelize sqlite3, pg

Database SchemaDS
Create, update or downgrade the data schema
inside the underlying data store.

Sequelize (none)

Peer InformationPI
Determine unique identi�cation and add-on
information about the client peer.

HAPI hapi-plugin-peer, geoip

Session HandlingSH
Manage secured per-connection sessions to
keep state between communication requests
and/or client sessions.

HAPI YAR

User AuthenticationUA
Determine and validate the unique identity
of the user communicating over the current
network connection.

HAPI JWT, Passport

Request ValidationRV
Validate the syntactical and semantical
compliance of the requests and sanitize
the requests.

HAPI Joi, DuckyJS

Request ProcessingRP
Process the request by dispatching execution
according to the provided request and
determined context information.

HAPI GraphQL.js

Role AuthorizationRA
Determine whether the role of the current user
is allowed to execute the current request.

(none) GraphQL-Tools-Sequelize

Database BootstrappingDB
Create, update or downgrade both mandatory
bootstrapping and optional domain-speci�c
data inside the underlying data store.

Sequelize ini

Licensed to Augsburg U
niversity for reproduction in Com

puter Science lecture contexts only..
Licensed to Technische U

niversität M
ünchen (TU

M
) for reproduction in Com

puter Science lecture contexts only.
Licensed to m

sg system
s ag for reproduction in m

sg Applied Technology Research training contexts only.

Ra
lf S

. Engelschall Signature Series Orig
in

al

Intellectual Content: Version 1.0.6 (2020-10-17), Authored 2017-2020 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.03 (2018-10-25), Copyright ©

 2017-2018 D
r. Ralf S. Engelschall <

http://engelschall.com
>

, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
12.6

A
F

Thin-Server Aspects
1 2 3

Manually deploy all applications into a single,
shared, and unmanaged !lesystem location.
Dependencies are resolved manually.
Examples: Windows Fonts, Unix 1990th
/usr/local.

Pro: simple deployment
Con: incompatibilities, hard uninstallation

Bare AmalgamationAMA

Amalgamation

Applic
ation

Establish an application out of multiple
Managed Packages. Examples: OpenPKG
Stack, Docker Compose, Kubernetes/
Kompose, Kubernetes/Helm.

Pro: independent, "exible
Con: overhead

Package/Container StackSTK
Application

Stack

Package/
Container

Manually deploy all applications into
multiple, distinct, and unmanaged !lesystem
locations. Dependencies are resolved
manually. Examples: macOS *.app,
OpenPKG LSYNC.

Pro: simple deployment, easy uninstallation
Con: no repair mechanism

Unmanaged HeapUHP

Applic
ation

Heap

Bundle an application with its stripped-down
OS dependencies and run-time environment
into a container image. Examples: Docker/
ContainerD, Kubernetes/CRI-O, Windows
Portable Apps.

Pro: independent, simple deployment
Con: fewer variations, no dependencies

Container ImageCON

Let individual installers deploy applications
into multiple, distinct, and managed
!lesystem locations. Dependencies are
manually resolved or bundled. Examples:
macOS *.pkg, Windows MSI, InnoSetup.

Pro: easy uninstallation, repairable
Con: requires installer, diversity, no dep.

Managed HeapMHP
Bundle an application with its full OS
dependencies and run-time environment
into a virtual machine image and deploy and
execute this on a hypervisor. Examples:
VirtualBox, VMWare, HyperV, Parallels, QEMU.

Pro: all-in-one, independent
Con: overhead, sealed, in"exible

Virtual Machine ImageVMI

Let a central package manager deploy all
applications into a single, shared, and
managed !lesystem location. Dependencies
are automatically resolved. Examples: APT,
RPM, FreeBSD pkg, MacPorts, Gradle, NPM.

Pro: easy uninstall., repairable, dependencies
Con: P.M. pre-installation, P.M. single instance

Managed PackagePKG
Bundle an application with its full OS
dependencies, run-time environment and
underlying hardware. Examples: AVM Fritz!
Box, SAP HANA.

Pro: all-in-one, independent
Con: expensive, sealed, in"exible

Solution ApplianceAPP

Software

Solution Appliance

Hardware

OS

Application

Container Image

OS (guest, user-land)

Application

Container Runtime

Virtual Machine Image

OS (guest)

Application

Virtual Machine Hypervisor

Package/Container Manager

Package/
Container

Application

Application

Applic
ation

Applic
ation

Applic
ation

Heap

Applic
ation

Heap

Applic
ation

Heap

Package Manager

Applic
ation

Package

Applic
ation

Package

Applic
ation

Package

Installer

Applic
ation

Heap

Installer

Applic
ation

Heap

Installer

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.10 (2022-07-01), Authored 2018-2022 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.7 (2019-11-03), Copyright ©

 2018-2019 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
13.1

Software Deployment

ON-DEMAND

PAY-PER-USE

ELASTICITY

SELF-SERVICE

MULTI-TENANCY

MEASURED SERVICE

NETWORK ACCESS

lo
gi

ca
lly

 /
ch

ro
no

lo
gi

ca
lly

 re
la

te
d

Public Cloud

Private Cloud

Community Cloud On-Premises

Provider-Hosted

ou
ts

id
e-

in
sid

e
re

la
tio

ns
hi

p

ou
ts

id
e-

in
sid

e
re

la
tio

ns
hi

p

SaaS
Software

as a Service

FaaS
Function

as a Service

PaaS
Platform

as a Service

IaaS
Infrastructure

as a Service

te
ch

ni
ca

l l
ay

er
s

CaaS
Container
as a ServiceNetwork

Tools & Libraries

Operating System

Application Runtime
Service Events
Service Mesh

Computer

Container Runtime

Application
Service

aka
“Serverless

Computing”

User Session Function Call Continuously

AUTOMATABLE
lo

gi
ca

lly
 /

ch
ro

no
lo

gi
ca

lly
 re

la
te

d

Duration:

Proprietary StandardizedInterfaces:

e.g. AWS EC2
e.g. Azure Virtual Machines

(think: Virtual Machine)

e.g. AWS ECS & Fargate
e.g. Azure Container Apps

(think: Docker)

e.g. AWS EKS
e.g. Azure AKS

(think: Kubernetes)

e.g. AWS Lambda
e.g. Azure Functions

(think: Stateless Microservice)

e.g. Salesforce
e.g. Sharepoint 365

(think: Web-UI-based Service)

(think: OCI) (think: PC)

Cloud Approaches

Cloud Characteristics Cloud Scope Cloud LocationWho? Where?How?

What?

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.2.0 (2022-07-01), Authored 2017-2022 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.3.0 (2022-07-01), Copyright ©

 2017-2022 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
13.2

Cloud Computing Resources

Reference Architecture Blueprint

API
Gateway

(Trae!k)

Microservice
(Frontend)

Message
Queue

(NATS + NATS
Streaming Server)

Session
Store

(Corvus + Redis)

Caching
Proxy

(Squid)

Artifact
Repository

(Nexus)

Service
Registry
(Kubernetes)

Process
Manager

(Kubernetes)

Credential
Store

(Vault + Notary)

Metric
Store

(In"uxDB-Relay +
In"uxDB)

Event
Store
(Jaeger)

Enterprise
Integration

(WSO2 ESB)

Entity
Store

(CockroachDB)

BLOB
Store
(Minio)

Authentication
& Authorization
(Dex + SPIRE + Opa)

Continuous
Delivery

(Drone)

Version
Control
(Gitea + Git)

Full-Text
Store

(ElasticSearch)

Name
Resolution

(CoreDNS)

Communication [C]

Persistence [P]

Tracing [T]

Gateway [G]

Process
Manager

(Kubernetes + CRI-O)

Service
Registry
(Kubernetes)

Microservice
(Core)

Microservice
(Core)

Microservice
(Frontend)

Common Group

Microservice Application (HA)

Foreign Application (non-HA)

Platform Application (HA)

Microservice Group

Microservice
(Cross)

Microservice
(Backend)

Major Design Criterias:
1. Targets DevOps approach.
2. Targets Continuous Delivery process.
3. Targets Microservice Architecture.
4. Targets Container Image deployment.
5. Targets Service Mesh communication.
6. Targets Server Cluster setup.
7. Provides High-Availability of Service Platform
8. Provides High-Availability of Application Microservices.
9. Provides Scalability of Application Microservices.

(Virtual) Machine

Systems of
Record

DevelopersUsersSystems of
Engagement

Management [M] Delivery [D]

Graph
Store
(Neo4J)

Blockchain
Store

(Tendermint)

File-Tree
Store

(GlusterFS + XFS)

Microservice
(Backend)

Microservice
(Cross)

Microservice
(Cross)

Authentication
& Authorization

(SPIRE Agent)

Integration [I]

Major Approach Idea:
With Cloud-Native Architecture one maximizes the
leverage of PaaS-like, high-available, and scalable Cloud
services at the level of Software- and Systems-Architecture
for a whole set of applications.

M G I DT P C

2

M G I T P C

M G I T P C

1 3 N

Partitioned Cluster Setup (5x2+1+N Machines):

D

21 3 N

…

…

M G I T P C

M G I T P C

M G I T P C

M G I T P C

M G I T P C

M G I T P C

M G I T P C

Standard Cluster Setup (5+1+N Machines):

Practical Cluster Setups

Cloud-native technologies empower organizations to build and
run scalable applications in modern, dynamic environments such
as public, private, and hybrid clouds. Containers, service meshes,
microservices, immutable infrastructure, and declarative APIs
exemplify this approach. These techniques enable loosely coupled
systems that are resilient, manageable, and observable. Combined
with robust automation, they allow engineers to make high-
impact changes frequently and predictably with minimal toil.

CNCF Cloud-Native De!nition 1.0

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.2.4 (2019-10-26), Authored 2016-2019 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.2.6 (2022-10-09), Copyright ©

 2016-2022 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
13.3

Cloud-Native Architecture

CHALLENGES MATURITY LEVELS

GOAL

Provide exceptional User Experience
by taking temporary client/server
network o!ine situations into
account and establish trust in the
o!ine capability of the application.

UX Exceptional
User Experience

CONTEXT

Client/sever applications which
drive business processes through
use-cases, based primarily on the
editing, storing, and retrieving of
information.

IS Business
Information Systems

On-demand availability of
computing resources, especially
data storage and computing
power, without direct active
management by the customer.

CC Cloud
Computing

Network o!ine situations caused
by the explicit on/o" toggling of
overlayed Virtual (Private)
Networks by the user.

VPN Toggled
Virtual (Private) Networks

Network o!ine situations caused
by the implicit switching between
the mobile network cells by the
device during mobile use.

MNC Switched
Mobile Network Cells

Network o!ine situations caused
by the failure of any network
components between the client
and server tiers of an application.

NCO Failed
Network Components

During o!ine phase, client allows
read-operations, but no write-
operations, to locally cached data.

L2 O!ine
Read

During o!ine phase, client
explicitly disables user interface
and shows modal error message.

L1 O!ine
Aware

During o!ine phase, client
implicitly fails with
network errors.

L0 O!ine
Unaware

During o!ine phase, client allows
non-atomic (transactional) read/
write-operations to any locally
cached data.

L5 O!ine
Transactional Read / Write

During o!ine phase, client allows
atomic read/write-operations to
any locally cached data.

L4 O!ine
Read & Atomic Write

During o!ine phase, client allows
atomic read-operations to any,
and write-operations to user-
exclusive, locally cached data.

L3 O!ine
Read & User-Exclusive Write

[]

Thin-Client

Rich-Client

Web Network Information API

Data Access Layer Proxy

Last-Win Conflict Resolu
tion

Web Storage API

Data Synchronisati
on

CRDT, Event Sourcing

CQRS, Optimistic Locking

SAGA
Compensation

Hint: you cannot solve o!ine scenarios at the technical
level if your use-cases are not already aligned to them.

Notice: each level
increases user experience, but also increases
technical complexity.

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.0 (2023-10-10), Authored 2023 by D
r. Ralf S. Engelschall, based on w

ork of M
ichael Schäfer and Andreas Lehm

ann
G

raphical Illustration: Version 1.0.0 (2023-10-10), Copyright ©
 2023 D

r. Ralf S. Engelschall <http://engelschall.com
>, All Rights Reserved.

U
nauthorized Reproduction Prohibited.

A
F

13.4

O!ine Capability

	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1

