TECHNISCHE
MUNCHEN

Software Engineering

in der industriellen Praxis
(SEIP)

Dr. Ralf S. Engelschall

W ARCHITECTURE

¥ o Formal Languages TUT

Declarative Languages Imperative Languages

Express the target state Express the steps
and let the machine figure out the steps. how the machine has to reach the target state.

Markup Languages Configuration Languages Shell Languages Programming Languages

Rule Languages Constraint Languages Text-Processing Languages Macro Languages

23

duwor
ansasal SHI o3 [RUabU,

Query Languages Validation Languages Expression Languages Template Languages

solution approach: automatically, non-obvious solution approach: manually, obvious Examples:
execution control: automatically, pre-defined execution control: manually, fine-grained o
imizati pre-defined performance optimization: manually, fine-grained alternative
There are innumerable Formal Languages. In a Declarative approaches are usually to be preferred to
technology stack, usually, almost a dozen such imperative approaches because they leave it to the
languages are used at the same time. The architect implementation (and not to the programmer) to find
must therefore select them very carefully. the optimal way. In addition, they permit incremental
approaches, where the next step is determined by the
The formal languages can first be divided into particular difference between the current state and the
Declarative Languages and Imperative Languages. desired target state. This is especially important for
The former expresses a target state (“"WHAT"), the latter recovery in very dynamic and error-prone
expresses the way to get there ("HOW”). environments.
Questions
© Into which two classes can Formal Languages be
divided?

W ARCHITECTURE

/i FUNDAMENTALS Tech nology PI atforms 'I'Im ;:,\E\Z%%ﬁgj

Application . secondary focus of platform
. primary focus of platform (ancient)
Tool
. primary focus of platform (current)
o
O

Application
Remember:

Tool
Infrastructure
Library
Framework
Run-Command
. +
Operating Tool +
V]
System
(User-Land) Library
(¢]
Loader & Standard-Library
Operating Kernel Subsystem
System =
(Kernel-Land) Device Driver 2
A Technology Platform is less about choosing a particular programming language and

Desktop
more about choosing a particular ecosystem for targeting a particular level of software!

-
e
w

-
o
=
5]
A
©
>
©
=

WASM

Windows macOS GNU/Linux FreeBSD

Intel/AMD x64
ARM/Cortex/Apple 64 .
RISC-V 64 .

MIPS 64

Opinionated Recommendation (as of 2022): Typical Computing Devices (as of 2022):

Business: Scala, Kotlin, TypeScript, AssemblyScript Intel/AMD x64: Personal Computer (PC)

Infrastructure: Go, Rust, Scala, Kotlin, TypeScript ARM/Cortex/Apple 64: Raspberry Pl, BeagleBone, ROCKSPro64, iMac
Operating System (UL): Rust, Go RISC-V 64: Beagle-V, HiFive Unmatched

Operating System (KL): C, C++, Rust MIPS 64: Compex WPJ344

There are various levels of software, ranging from low- Questions

level and more difficult (operating system related) to

high-level and less difficult (business-logic related). @ s the Technology-Platform Node.js suitable to

implement a Kernel-Subsystem at the level of the

A Technology Platform is less about choosing a operating system?

particular programming language and more about
choosing a particular ecosystem for targeting a
particular kind of software!

W ARCHITECTURE TECHNISCHE
Ji5w FUNDAMENTALS ec no o tac UNIVERSITAT
u MUNCHEN

XX} Testing \

Debugging

s®
Linting

A

X 7

Editing

Building y

eee Packaging ¥
\

Software Engineering Tools

Attention:
Invasive to
programming
model

- ?‘ameworks (FR W)

Libr,
(\éa‘d ary@)
Language (LG)

Run-Time (RT)

Cover Functional and
Non-Functional

Access &

Authorization eee

Identity &
4 Authentication

(o)
~ Message
i Queue

Application
Landscape
Integration

.
A

Logging,
Tracing, e0e
Monitoring v

Challenge:

Requirements o
| System Engineering Tools

Technology Platform

e - -

Development
Environment

market scope / * / 5-15Y
Technology Stack «— vakns g

P« ' >
Platform
Focus of Environment

Datacenter
Environment

company scope / 5-10x / 1-5Y
Application

Software Architecture

domain scope / 1x/ -

System Architecture

A

Enterprise Blueprints

A Technology Platform consists of a Language, an
optional Run-Time environment and a Standard
Library. On top of this, Frameworks and Libraries
extend this to a Technology Stack, in which with them
especially all the prerequisites for the functional and
non-functional requirements in the Application are
achieved.

It has to be noted that the Run-Time and the
Frameworks are usually extremely “invasive” to the
programming model and thus can almost never be
replaced afterwards. Therefore, with the so-called
Walking Skeleton, the focus is mainly on the
Technology Stack to be defined and integrated.

While the Application has a functional scope and is
implemented only once, a particular Technology Stack
is usually defined by a company and then reused
several times over a period of a few years.

The underlying particular Technology Platform, on the
other hand, is implemented by a third party for the
market, is reused as often as required and must exist for
quite a long period of time.

Large companies, therefore, usually stringently define
the Technology Platforms and Technology Stacks in
their Enterprise Blueprints.

»
L} L

Enterprise Blueprints

For the Software Engineering Tools one should take
into account the tools for Testing, Debugging, Linting,
Editing, Building and Packaging of the Development
Environment, because these are usually directly
dependent on the particular Technology Stack.

The situation is similar for the System Engineering
Tools of the Platform Environment: these require at
least the associated Libraries in the Technology Stack,
in order to be addressed during the run-time of the
Application.

Questions

© What are the three components of a Technology
Platform?

© Which two additional components make up a
Technology Stack, compared to the Technology
Platform?

@® Which two components of a Technology Stack are
most “invasive” to the programming model?

vel I

% ARCHITECTURE TECHNISCHE
o o Rich-Client Aspects TUTE

IT InterfaceTheme

Style Reset, Shape, Color, Gradient,
Shadow, Font, Icon

Bootstrap

IW Interface Widgets

Icon, Label, Text Paragraph, Image, Form, Text-Field, Text-Area,
Date Picker, Toggle, Radio Button, Checkbox, Select List, Slider,

TypoPRO, FontAwesome, Normalize

Progress Bar, Hyperlink, Popup Menu, Dropdown Menu, Toolbar,

Tooltip, Tab, Pill Breadcrumb, Pagination, Badge, Alert, Panel,
Modal, Table, Scrollbar, Carousel

Bootstrap Select2, SlickGrid, ...

IL Interface Layouting
Responsive Design, Media Query, Frame, Grid,

Padding, Border, Margin, Alignment, Force,
Magnetism

Bootstrap

IE Interface Effects

Transition, Transformation, Keyframes,
Easing Function, Sound Effect, Physics

Swiper, jQuery Page, .

VuelS Animate.css, DynamicJS, H

Il Interface Interactions

Mouse, Keyboard, Touchscreen, Gesture,
Clipboard, Drag & Drop

18 Interface Internationalization
Text Internationalization (118N).

vue-i18next, 118Next

DC Data Conversion

/alu atting, Value Parsing,
Localization (LTON).

$4,234.56
2016-01-01

VuelS Moment, Numeral, Accounting, ...

DB DataBinding

Reactive, Observer, Unidirectional,
Bidirectional, Incremental

Vuels (none)

PM Presentation Model

Parameter Value, Command Value,
State Value, Data Value, Event Value,
Value Validation, Presentation Logic

ComponentSS (none)

DN Dialog Navigation

Deep Linking, Routing,
Dialog Flow

DL Dialog Life-Cycle

Component States,
Component State Transitions.

ComponentJS (none)

DS Dialog Structure

Component, Model/View/Controller Roles,
Hierarchical Composition

ComponentS Component)S-MVC
SP State Persistence

Local Storage, Cookies,
Caching

(none) Storeyjs, JS-Cookie

BM Business Model

Entity, Field, Relationship,
Universally Unique Identifiers (UUID)

(none) DataModelJS, Pure-UUID

UA Use-Case Authorization

User Experience, Dialog Restriction,
User, Group, Role, Use-Case, Data, Access.

)
&

Vuels Hammer, Mousetrap, Dragula, ...

IS Interface States

Rendered, Enabled, Visible, Focused,
Warning, Error, Floating

Component)S Director, URljs (none) (none)

CN dient Networking

Request/Response, Synchronization,
Push, Pull, Pulled-Push, REST, GraphQL,
Authentication, Session.

DA Dialog Automation
Dialog Macros, Click-Through, Smoke Testing.

VuelS (none)

IM Interface Mask DC Dialog Communication

Markup Loading, Markup Generation, Service, Event, Model, Socket,
Virtual DOM, Text, Bitmaps, Vectors, Hooks
2D/3D Canvas, Accessibility

ComponentSS, ComponentJS-Testdrive (none) Axios, Apollo Client

ED Environment Detection

Runtime Detection,
Feature Detection.

VuelJS jQuery-Markup, D3, Snap.svg, FabricJs, ... ComponentJS, Latching (none) Modernizr, FeatureJS, jQuery-Stage

To define a Technology Stack for a Rich Client, 21
Aspects have to be considered. Each aspect is covered
by at least one Framework or Library. In practice, each
aspect is usually covered by one Framework and zero
or more Libraries. The goal always is: to achieve the
greatest possible coverage of the aspects with a
minimum number of Frameworks and Libraries.

Two important aspects deal with the data model: the
Business Model is a data model that comes directly
from the server and is exactly the same in slicing and
granularity than the business data model of the server.
Its data is synchronized with a Presentation Model,
which in slicing and granularity is more like the (more
technical) data model of the user interface (especially
via the aspects Interface Mask and Data Binding).

Itis advisable to use Open Source Software (OSS) for
both Frameworks and Libraries and, if possible, to no
own custom implementations, as the effort usually is
not in proportion to the benefit. Because all aspects are
technical — and not functional — aspects of a user
interface.

Questions

© How does one ensure in a Rich-Client
Architecture that the numerous technical Aspects
of a user interface are addressed?

In the case of a Thin-Client Architecture (instead of a @ Which two Aspects of a Rich-Client Architecture

Rich-Client Architecture), a few aspects like Client
Networking and Environment Detection are omitted.
All other aspects are still valid, even if, in the case of a
Thin-Client Architecture, the frontend (and thus the
aspects of the user interface) of the application runs on
the server.

hold the data model and take care of the fact that
the data supplied by the server cannot be used
directly in the user interface?

" ARCHITECTURE
f FUNDAMENTALS

Thin-Server Aspects

TECHNISCHE
UNIVERSITAT
MUNCHEN

ED EnvironmentDetection

Detect the run-time environment, like underlying
operating system, execution platform, network
topology, feature toggles, etc.

Node

AP Argument Parsing
Parse options and arguments of the

Command-Line Interface (CLI) to bootstrap
application parameters.

(none) yargs

CP Configuration Parsing

Load and parse directives from configuration
file to bootstrap application parameters.

(none) JsYAML

PD Process Daemonizing

Detach from the startup terminal and host
process in order to run fully independently.

(none) daemonize2

PM Process Management

(Pre-)fork child processes and/or threads of
execution and monitor and control them
during the life-cycle of the application.

(none) cluster, nodemon

CM Component Management

Structure the code into components, instanciate
them under run-time and manage themina
stateful component life-cycle.

Microkernel (none)

CC Component Communication

SN Server Networking
Listen to network sockets, accept connections

and manage request/response and message
communication.

HAPI hapi-plugin-websocket, ws

Pl Peer Information

Determine unique identification and add-on
information about the client peer.

HAPI hapi-plugin-peer, geoip

SH Session Handling
Manage secured per-connection sessions to

keep state between communication requests
and/or client sessions.

HAPI
UA User Authentication

Determine and validate the unique identity
of the user communicating over the current
network connection.

HAPI JWT, Passport

RV Request Validation
Validate the syntactical and semantical

compliance of the requests and sanitize
the requests.

HAPI Joi, DuckyJS

RP Request Processing

Process the request by dispatching execution
according to the provided request and
determined context information.

HAPI GraphQLjs
RA Role Authorization

Determine whether the role of the current user

CN dient Networking

Provide mechanisms to connect to peers over
the network and perform request/response
and/or publish/subscribe communication.

(none) Axios, MQ

TS TaskScheduling

Schedule and execute recurring tasks
independent of regular I/0 operations.

(none) node-scheduler

ET ExecutionTracing
Provide mechanisms for tracing the execution

by logging event and measurement information
at certain points of interest.

Microkernel Winston

DA Database Access

Map in-memory domain entities onto data store
dependent persistent data structure.

Sequelize GraphQL-Tools-Sequelize

DC Database Connectivity
Locally or remotely connect the database

access layer to the underlying data store.

Sequelize sqlite3, pg

DS Database Schema

Create, update or downgrade the data schema
inside the underlying data store.

Sequelize (none)

DB Database Bootstrapping

B
o

Provide inter-component communication
mechanisms like events, hooks, registry, etc.

Microkernel Latching

To define a Technology Stack for a (Thin-)Server, 21
Aspects have to be considered. Each Aspect is covered
by at least one Framework or Library. In practice, each
Aspect is usually covered by one Framework and zero
or more Libraries. The goal always is: to achieve the
greatest possible coverage of the Aspects with a
minimum number of Frameworks and Libraries.

Itis advisable to use Open Source Software (OSS) for
both Frameworks and Libraries and, if possible, to no
own custom implementations, as the effort usually is
not in proportion to the benefit. Because all Aspects are
technical — and not functional — Aspects of a user
interface.

Itis to be noted that a server usually does not only
have the Aspect Server Networking (for the
connection of the Rich Clients), but also the Aspect
Client Networking, in order to be able to query other
servers.

is allowed to execute the current request.

(none) GraphQL-Tools-Sequelize

Create, update or downgrade both mandatory
bootstrapping and optional domain-specific
data inside the underlying data store.

Sequelize

In addition, it is to be noted that, above all, two
important Aspects address security issues: the Aspect
User Authentication identifies and authenticates the
user (“Is the user the one?”). The Aspect Role
Authorization, on the other hand, before all business
processes, checks whether the authenticated user
really is authorized to initiate the processes due to his
role(s) (“Is the user allowed to do this?”).

Questions

© Why does a (Thin-)Server usually have, besides
the obvious aspect Server Networking, also the
aspect Client Networking?

© Which Aspect of a (Thin-)Server takes care of the
Question “Is the user the one”?

© Which aspect of a (Thin-)Server takes care of the
question “Is the user allowed to do this"?

W ARCHITECTURE TECHNISCHE
Ji5w FUNDAMENTALS o are e o ment UNIVERSITAT
| | MUNCHEN

AMA Bare Amalgamation

Manually deploy all applications into a single,
shared, and unmanaged filesystem location.
Dependencies are resolved manually.
Examples: Windows Fonts, Unix 1990th
/usr/local.

Application
Applic
ation

Applic
Elelely]

Applic
ation

Application

Pro: simple deployment

Con: incompatibilities, hard unir Amalgamation

!
UHP Unmanaged Heap
Manually deploy all applications into
multiple, distinct, and unmanaged filesystem
locations. Dependencies are resolved
manually. Examples: macOS *.app,

OpenPKG LSYNC.

Applic
ation

Heap

Applic
ation

Heap

Applic
ation

Heap

Pro: simple deployment, easy unir
Con: no repair mechanism

MHP Managed Heap

Let individual installers deploy applications

into multiple, distinct, and managed) X)

filesystem locations. Dependencies are Applic Applic Applic

manually resolved or bundled. Examples: ation ation ation
& :

macOS *.pkg, Windows MSI, InnoSetup. Heap Heap Heap

Pro: easy uninstallation, repairable
Con: requires installer, diversity, no dep.

Installer Installer Installer

PKG Managed Package

Let a central package manager deploy all

applications into a single, shared, and " " .
managed filesystem location. Dependencies Aa‘tji’glr'\c Aa%zlr']c /;F;i’glr'f
are automatically resolved. Examples: APT,

RPM, FreeBSD pkg, MacPorts, Gradle, NPM. Package Package Package

Pro: easy uninstall, repairable, dependencies
Con: PM. pre-installation, PM. single instance

Package Manager

During Software Deployment, an Application is
installed on a file system for execution. With the Bare
Amalgamation, the files are copied into a central
directory (e.g., Windows C: \Windows\system32).
This is easy to realize but makes the clean removal later
on very hard.

With Unmanaged Heap, each application is copied into
a separate directory (e.g.,, macOS * . app). This is very
easy to realize and also allows easy removal. But one
still has no repair possibilities. With Managed Heap, an
own installer is required for each application, among
other things, to get repair possibilities (e.g., Windows
MSI).

With Managed Package, a central Package Manager is
used, which standardizes the administration (e.g.,
DPKG/APT or RPM). It also allows the resolving of
dependencies. If, on the other hand, one wants to make
the application more independent of the operating
system and install it as a shielded unit, the Container
Image deployment offers itself (e.g., Docker). This is
where the application is bundled together with all its
dependencies and a part of the operating system.

To be more flexible, one can keep the Managed
Packages or Container Images very small and instead
define an application through an entire Package/
Container Stack (e.g., Docker Compose).

CON Container Image

Bundle an application with its stripped-down
OS dependencies and run-time environment
into a container image. Examples: Docker/
ContainerD, Kubernetes/CRI-O, Windows
Portable Apps.

Application
OS (guest, user-land)
Container Image

Container Runtime

STK Package/Container Stack

Pro: independent, simple deployment
Con: fewer variations, no dependencies

Establish an application out of multiple
Managed Packages. Examples: OpenPKG
Stack, Docker Compose, Kubernetes/
Kompose, Kubernetes/Helm.

Application

Package/
Container

Package/
Container

Stack

Package/Container Manager

Pro: independent, flexible
Con: overhead

VMI Virtual Machine Image

Bundle an application with its full OS

dependencies and run-time environment Application
into a virtual machine image and deploy and 05 (quest)
execute this on a hypervisor. Examples:

Virtual Machine Image

VirtualBox, VMWare, HyperV, Parallels, QEMU.

Pro: all-in-one, independent

Virtual Machine Hypervisor
Con: overhead, sealed, inflexible

APP Solution Appliance

Bundle an application with its full OS
dependencies, run-time environment and
underlying hardware. Examples: AVM Fritz!
Box, SAP HANA.

Software Application

0s

Hardwa re

Solution Appliance

Pro: all-in-one, independent
Con: expensive, sealed, inflexible

If one needs more shielding, a Virtual Machine Image
offers itself. Here the application is bundled with all its
dependencies and the complete operating system and
is installed on a virtual machine (e.g. ORACLE
VirtualBox). As the maximum expansion level, the
application can be installed as a Solution Appliance,
where the application, its dependencies, the associated
operating system, and the underlying hardware are
bundled into one total solution (e.g., SAP HANA).

In practice, the various approaches occur mainly in
combined form. A Container Stack consists of
Container Images. These, in turn, are built by installing
dependencies via Managed Packages, and the
application itself as an Unmanaged Heap, into the
container. The Managed Packages, beforehand during
packaging, are created with Bare Amalgamation steps.

Questions

© Which type of Software Deployment bundles and
installs an application with all its dependencies
and part of the operating system?

RN 4v |

W ARCHITECTURE

e wowens Cloud Computing Resources TUTI -

[
[N}

E : -E 7
g 2 2 %
g g %"E -§
Cloud Approaches what?
e.g. Salesforce e.g. AWS Lambda e.g. AWS EKS e.g. AWS ECS & Fargate e.g. AWS EC2
S e.g. Sharepoint 365 e.g. Azure Functions e.g. Azure AKS e.g. Azure Container Apps e.g. Azure Virtual Machines
(W EENE S| (think: Stateless Microservice) (think: Kubernetes) (think: Docker) (think: Virtual Machine)
aka
Computing’
Saas FaaS Paas Caas laaS
Software Function Platform Container infrastructure
as a Service as a Service as a Service as a Service as a Service
Duration:
Interfaces:
(think: OCT) (think: PC)
Cloud Computing has four essential dimensions. The The third dimension Cloud Scope (“Who?"), states for
first dimension Cloud Characteristics (“How?”) whom the resources are provided: Public Cloud for
describes the eight characteristics of how a resource public Cloud Computing, Community Cloud for Cloud
provisioning must happen in order for the provisioning Computing of a closed group of organizations, and
to be considered as Cloud Computing: On-Demand, Private Cloud for Cloud Computing of a single
Self-Service, Automatable, Network-Access, Multi- organization.
Tenancy, Measured Service, Elasticity (aka Scalability),
and Per-Per-Use. Finally, the fourth dimension Cloud Location
(“Where?”), states where the resources are physically
With these characteristics, in the second dimension, provided: Provider-Hosted means at an external
there are various Cloud Approaches (“What?”), which provider, On-Premises means locally at the using
specify what is provided: for Infrastructure as a Service organization.
(laaS), only Network and a Computer is provided,
usually a virtual machine. With Container as a Service Questions
(CaaS) additionally a (Host) Operating System and a
Container Run-Time are provided. @ List at least 5 of the 8 Cloud Characteristics that a
resource provisioning must fulfill for it to be
surrounding Tools & Libraries and an Application Run-
Time are provided; with Function as a Service (FaaS) © Inwhich Cloud Approach is only Network and
additionally external Service Events and a Service Computer provided?
Mesh and for Software as a Service (SaaS) the
Application and the its (functional) Service are
additionally provided.

W ARCHITECTURE I d N L] A h o TECHNISCHE
Lol UNIVERSITAT
v weuens Cloud-Native Architecture T e
Reference Architecture Blueprint CNCF Cloud-Native Definition 1.0 E

ﬁ.l gt e e oeveres (89

Version

Cloud-native tec jies empower izations to build and
run scalable applications in modern, dynamic environments such
as public, private, and hybrid clouds. Containers, service meshes,
microservices, immutable infrastructure, and declarative APls
exemplify this approach. These techniques enable loosely coupled
systems that are resilient, manageable, and observable. Combined
with robust automation, they allow engineers to make high-
impact changes frequently and predictably with minimal toil.

Practical Cluster Setups

Management [M] Gateway [G] Integra

Name Caching API Authentication Enterprise

Resolution Proxy Gateway &Authorization Integration
(CoreDNS) (Squid) (Traefik) (Dex + SPIRE + Opa) (WS02 ESB)

Control
(Gitea + Git)

Standard Cluster Setup (5+1+N Machines):
Service Continuous
Registry Delivery

CLTTI T T
(Kubernetes) (Drone)
Authentication B Microservice [Microservice [Microservice . {n a n n }
Process &Authorization Artifact
(SDIRE Anent) (Frontend) (Frontend) (Cross) .
Manager (BA=L) Repository
ooo O
Fferf"tce Microservice [Microservice [Microservice
25 ; (v]o]] @
Communication [C] \Kub%muu?)’ (Core) (Core) =) Tracing [T]
‘e DN ooo ooDo)
T
e G Microservice [Microservice [Microservice e
 (NATS + NATS M % ay
Streaming Server) Y (Backend) (Backend) (Cross) Infl
@ - @
Session
Store Partitioned Cluster Setup (5x2+1+N Machines):
(Corvus + Redis) (Jaeger)
EERNEERE] x
Credential Entity Graph Full-Text Blockchain BLOB File-Tree {n a n } { ﬂ }
Store Store Store Store Store Store Store
CT-TIRCT-I]

(Vault + Notary) (CockroachDB) (Neod)) (ElasticSearch) (Tendermint) (Minio) (GlusterFS + XFS)

Persistence [P]
@ commonGroup Il Platform Application (HA) Major Approach Idea: : r?;;gﬁ;%’\‘/gg:eaiﬁoach n n n { n
O esece oy B oo ot on sl 00 bleCloug 2 Tl Continuous Devery process.
firtual) Machine licroservice ication . i’ - argets Microservice Architecture.
e s SR At 4 ot ey ooD Doo)
6. Targets Server Cluster setup. '
7. Provides High-Availability of Service Platform
8. Provides High-Availability of Application Microservices. @ @ @ oo @
9. Provides Scalability of Application Microservices.
In Cloud-Native Architecture, applications are In a Cloud-Native Architecture, it comes down to
developed, installed and operated in such a way that achieving High Availability and Scalability for both the
the advantages of Cloud Computing are maximized services of the platform as well as for the Microservices
and, in particular, that all infrastructure services are of the application.
provided by a central Service Platform.
Questions
In practice, this ideally means the combination of an
agile DevOps approach, an end-to-end Continuous © On which two essential aspects is the Cloud-
Dellyery process, a flexible Microservice software Native Architecture based?
architecture, the use of a stable Container Image based
software deployment, the use of a Service Mesh for © What does the Cloud-Native Architecture offer to
internal Microservice communication, and the use of a the Microservices of an application?

Server Cluster for scaling the Microservices.

The Service Platform is divided into the 7 service areas
Management, Gateway, Integration, Tracing,
Persistence, Communication plus Delivery, which are
usually partitioned in a failsafe 5+1 or alternatively in a
partially partitioned form on 5x2+1 machines. The
Microservices of the application are installed on the
Service Platform on separate machines.

W ARCHITECTURE
f FUNDAMENTALS

Offline Capability

TECHNISCHE
UNIVERSITAT
MUNCHEN

CONTEXT

Exceptional
Ux User Experience

Provide exceptional User Experience
by taking temporary client/server
network offline situations into
account and establish trust in the
offline capability of the application.

CHALLENGES

VPN Toggled

Virtual (Private) Networks

Network offline situations caused
by the explicit on/off toggling of
overlayed Virtual (Private)
Networks by the user.

Switched
MNC Mobile Network Cells

Network offline situations caused
by the implicit switching between
the mobile network cells by the
device during mobile use.

NCO Failed

Network Components

Network offline situations caused

IS Business
Information Systems

Client/sever applications which
drive business processes through
use-cases, based primarily on the
editing, storing, and retrieving of
information.

Offline
L2 Read

During offline phase, client allows
read-operations, but no write-
operations, to locally cached data.

ss Layer Proxy
Data A(»[oeeb Storage APl

L1 Offline
Aware
During offline phase, client
explicitly disables user interface
and shows modal error message.
Rich-Client
Web Network Information AP

Offline
Lo Unaware

During offline phase, client

MATURITY LEVELS

Cloud
cC Computing

On-demand availability of
computing resources, especially
data storage and computing
power, without direct active
management by the customer.

Hint: you cannot solve offline
scenarios at the technical
level if your use-cases are not
already aligned to them.

L5 Offline
Transactional Read / Write

During offline phase, client allows
non-atomic (transactional) read/
write-operations to any locally
cached data.

SAGA
Compensation

Offline
L4 Read & Atomic Write

During offline phase, client allows
atomic read/write-operations to
any locally cached data.

RDT, Event Sourcing
CAUZCS, Optimistic Locking

L3 Offline
Read & User-Exclusive Write

During offline phase, client allows

vel Il

by the failure of any network
components between the client
and server tiers of an application.

implicitly fails with
network errors.

Notice: each level
increases user experience,
butalso increases
technical complexity.

Offline capabilities can be essential for an exceptional
User Experience of client/server-based Business
Information Systems in the context of Cloud
Computing. The challenges for the temporary network
offline situations include toggled Virtual Private
Networks (VPN), switched mobile network cells, and
failed network components.

atomic read-operations to any,
and write-operations to user-
exclusive, locally cached data. .
ta Synchronisation
Thin-Cliert La(t»wiﬁaC‘UVIHyMt Resolution

In offline scenarios, during an offline phase, an
application can support a particular maturity level: At
Offline Unaware, the client implicitly fails with
network errors; At Offline Aware, the client explicitly
disables user interface and shows modal error
message; At Offline Read, the client allows read-
operations, but no writeoperations, to locally cached
data; At Offline Read & User-Exclusive Write, the
client allows atomic read-operations to any, and write-
operations to userexclusive, locally cached data; At
Offline Read & Atomic Write, the client allows atomic
read/write-operations to any locally cached data; At
Offline Transactional Read / Write, the client allows
non-atomic (transactional) read/ write-operations to
any locally cached data.

Questions

© Why can offline capability of applications be
crucial in the context of Cloud Computing?

	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions

