
Dr. Ralf S. Engelschall

Software Engineering
in der industriellen Praxis

(SEIP)



There are innumerable Formal Languages. In a
technology stack, usually, almost a dozen such
languages are used at the same time. The architect
must therefore select them very carefully.

The formal languages can first be divided into
Declarative Languages and Imperative Languages.
The former expresses a target state (“WHAT”), the latter
expresses the way to get there (“HOW”).

Declarative approaches are usually to be preferred to
imperative approaches because they leave it to the
implementation (and not to the programmer) to find
the optimal way. In addition, they permit incremental
approaches, where the next step is determined by the
particular difference between the current state and the
desired target state. This is especially important for
recovery in very dynamic and error-prone
environments.

Questions

Into which two classes can Formal Languages be
divided?





There are various levels of software, ranging from low-
level and more difficult (operating system related) to
high-level and less difficult (business-logic related).

A Technology Platform is less about choosing a
particular programming language and more about
choosing a particular ecosystem for targeting a
particular kind of software!

Questions

Is the Technology-Platform Node.js suitable to
implement a Kernel-Subsystem at the level of the
operating system?





A Technology Platform consists of a Language, an
optional Run-Time environment and a Standard
Library. On top of this, Frameworks and Libraries
extend this to a Technology Stack, in which with them
especially all the prerequisites for the functional and
non-functional requirements in the Application are
achieved.

It has to be noted that the Run-Time and the
Frameworks are usually extremely “invasive” to the
programming model and thus can almost never be
replaced afterwards. Therefore, with the so-called
Walking Skeleton, the focus is mainly on the
Technology Stack to be defined and integrated.

While the Application has a functional scope and is
implemented only once, a particular Technology Stack
is usually defined by a company and then reused
several times over a period of a few years.

The underlying particular Technology Platform, on the
other hand, is implemented by a third party for the
market, is reused as often as required and must exist for
quite a long period of time.

Large companies, therefore, usually stringently define
the Technology Platforms and Technology Stacks in
their Enterprise Blueprints.

For the Software Engineering Tools one should take
into account the tools for Testing, Debugging, Linting,
Editing, Building and Packaging of the Development
Environment, because these are usually directly
dependent on the particular Technology Stack.

The situation is similar for the System Engineering
Tools of the Platform Environment: these require at
least the associated Libraries in the Technology Stack,
in order to be addressed during the run-time of the
Application.

Questions

What are the three components of a Technology
Platform?



Which two additional components make up a
Technology Stack, compared to the Technology
Platform?



Which two components of a Technology Stack are
most “invasive” to the programming model?





To define a Technology Stack for a Rich Client, 21
Aspects have to be considered. Each aspect is covered
by at least one Framework or Library. In practice, each
aspect is usually covered by one Framework and zero
or more Libraries. The goal always is: to achieve the
greatest possible coverage of the aspects with a
minimum number of Frameworks and Libraries.

It is advisable to use Open Source Software (OSS) for
both Frameworks and Libraries and, if possible, to no
own custom implementations, as the effort usually is
not in proportion to the benefit. Because all aspects are
technical — and not functional — aspects of a user
interface.

In the case of a Thin-Client Architecture (instead of a
Rich-Client Architecture), a few aspects like Client
Networking and Environment Detection are omitted.
All other aspects are still valid, even if, in the case of a
Thin-Client Architecture, the frontend (and thus the
aspects of the user interface) of the application runs on
the server.

Two important aspects deal with the data model: the
Business Model is a data model that comes directly
from the server and is exactly the same in slicing and
granularity than the business data model of the server.
Its data is synchronized with a Presentation Model,
which in slicing and granularity is more like the (more
technical) data model of the user interface (especially
via the aspects Interface Mask and Data Binding).

Questions

How does one ensure in a Rich-Client
Architecture that the numerous technical Aspects
of a user interface are addressed?



Which two Aspects of a Rich-Client Architecture
hold the data model and take care of the fact that
the data supplied by the server cannot be used
directly in the user interface?





To define a Technology Stack for a (Thin-)Server, 21
Aspects have to be considered. Each Aspect is covered
by at least one Framework or Library. In practice, each
Aspect is usually covered by one Framework and zero
or more Libraries. The goal always is: to achieve the
greatest possible coverage of the Aspects with a
minimum number of Frameworks and Libraries.

It is advisable to use Open Source Software (OSS) for
both Frameworks and Libraries and, if possible, to no
own custom implementations, as the effort usually is
not in proportion to the benefit. Because all Aspects are
technical — and not functional — Aspects of a user
interface.

It is to be noted that a server usually does not only
have the Aspect Server Networking (for the
connection of the Rich Clients), but also the Aspect
Client Networking, in order to be able to query other
servers.

In addition, it is to be noted that, above all, two
important Aspects address security issues: the Aspect
User Authentication identifies and authenticates the
user (“Is the user the one?”). The Aspect Role
Authorization, on the other hand, before all business
processes, checks whether the authenticated user
really is authorized to initiate the processes due to his
role(s) (“Is the user allowed to do this?”).

Questions

Why does a (Thin-)Server usually have, besides
the obvious aspect Server Networking, also the
aspect Client Networking?



Which Aspect of a (Thin-)Server takes care of the
Question “Is the user the one”?



Which aspect of a (Thin-)Server takes care of the
question “Is the user allowed to do this”?





During Software Deployment, an Application is
installed on a file system for execution. With the Bare
Amalgamation, the files are copied into a central
directory (e.g., Windows C:\Windows\system32).
This is easy to realize but makes the clean removal later
on very hard.

With Unmanaged Heap, each application is copied into
a separate directory (e.g., macOS *.app). This is very
easy to realize and also allows easy removal. But one
still has no repair possibilities. With Managed Heap, an
own installer is required for each application, among
other things, to get repair possibilities (e.g., Windows
MSI).

With Managed Package, a central Package Manager is
used, which standardizes the administration (e.g.,
DPKG/APT or RPM). It also allows the resolving of
dependencies. If, on the other hand, one wants to make
the application more independent of the operating
system and install it as a shielded unit, the Container
Image deployment offers itself (e.g., Docker). This is
where the application is bundled together with all its
dependencies and a part of the operating system.

To be more flexible, one can keep the Managed
Packages or Container Images very small and instead
define an application through an entire Package/
Container Stack (e.g., Docker Compose).

If one needs more shielding, a Virtual Machine Image
offers itself. Here the application is bundled with all its
dependencies and the complete operating system and
is installed on a virtual machine (e.g. ORACLE
VirtualBox). As the maximum expansion level, the
application can be installed as a Solution Appliance,
where the application, its dependencies, the associated
operating system, and the underlying hardware are
bundled into one total solution (e.g., SAP HANA).

In practice, the various approaches occur mainly in
combined form. A Container Stack consists of
Container Images. These, in turn, are built by installing
dependencies via Managed Packages, and the
application itself as an Unmanaged Heap, into the
container. The Managed Packages, beforehand during
packaging, are created with Bare Amalgamation steps.

Questions

Which type of Software Deployment bundles and
installs an application with all its dependencies
and part of the operating system?





Cloud Computing has four essential dimensions. The
first dimension Cloud Characteristics (“How?”)
describes the eight characteristics of how a resource
provisioning must happen in order for the provisioning
to be considered as Cloud Computing: On-Demand,
Self-Service, Automatable, Network-Access, Multi-
Tenancy, Measured Service, Elasticity (aka Scalability),
and Per-Per-Use.

With these characteristics, in the second dimension,
there are various Cloud Approaches (“What?”), which
specify what is provided: for Infrastructure as a Service
(IaaS), only Network and a Computer is provided,
usually a virtual machine. With Container as a Service
(CaaS) additionally a (Host) Operating System and a
Container Run-Time are provided.

For Platform as a Service (PaaS), additional
surrounding Tools & Libraries and an Application Run-
Time are provided; with Function as a Service (FaaS)
additionally external Service Events and a Service
Mesh and for Software as a Service (SaaS) the
Application and the its (functional) Service are
additionally provided.

The third dimension Cloud Scope (“Who?”), states for
whom the resources are provided: Public Cloud for
public Cloud Computing, Community Cloud for Cloud
Computing of a closed group of organizations, and
Private Cloud for Cloud Computing of a single
organization.

Finally, the fourth dimension Cloud Location
(“Where?”), states where the resources are physically
provided: Provider-Hosted means at an external
provider, On-Premises means locally at the using
organization.

Questions

List at least 5 of the 8 Cloud Characteristics that a
resource provisioning must fulfill for it to be
considered Cloud Computing!



In which Cloud Approach is only Network and
Computer provided?





In Cloud-Native Architecture, applications are
developed, installed and operated in such a way that
the advantages of Cloud Computing are maximized
and, in particular, that all infrastructure services are
provided by a central Service Platform.

In practice, this ideally means the combination of an
agile DevOps approach, an end-to-end Continuous
Delivery process, a flexible Microservice software
architecture, the use of a stable Container Image based
software deployment, the use of a Service Mesh for
internal Microservice communication, and the use of a
Server Cluster for scaling the Microservices.

The Service Platform is divided into the 7 service areas
Management, Gateway, Integration, Tracing,
Persistence, Communication plus Delivery, which are
usually partitioned in a failsafe 5+1 or alternatively in a
partially partitioned form on 5x2+1 machines. The
Microservices of the application are installed on the
Service Platform on separate machines.

In a Cloud-Native Architecture, it comes down to
achieving High Availability and Scalability for both the
services of the platform as well as for the Microservices
of the application.

Questions

On which two essential aspects is the Cloud-
Native Architecture based?



What does the Cloud-Native Architecture offer to
the Microservices of an application?





Offline capabilities can be essential for an exceptional
User Experience of client/server-based Business
Information Systems in the context of Cloud
Computing. The challenges for the temporary network
offline situations include toggled Virtual Private
Networks (VPN), switched mobile network cells, and
failed network components.

In offline scenarios, during an offline phase, an
application can support a particular maturity level: At
Offline Unaware, the client implicitly fails with
network errors; At Offline Aware, the client explicitly
disables user interface and shows modal error
message; At Offline Read, the client allows read-
operations, but no writeoperations, to locally cached
data; At Offline Read & User-Exclusive Write, the
client allows atomic read-operations to any, and write-
operations to userexclusive, locally cached data; At
Offline Read & Atomic Write, the client allows atomic
read/write-operations to any locally cached data; At
Offline Transactional Read / Write, the client allows
non-atomic (transactional) read/ write-operations to
any locally cached data.

Questions

Why can offline capability of applications be
crucial in the context of Cloud Computing?




	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions

