TECHNISCHE
TUTT voveesrs
MUNCHEN

Software Engineering in der industriellen Praxis (SEIP)

Dr. Ralf S. Engelschall

TECHNISCHE
UNIVERSITAT
MUNCHEN

itecture TUTI

Control Arch

Version

ARCHITECTURE
FUNDAMENTALS

/[

14.1

<
(@)

c

o

.

2 =
Z ~9
= Cc

25
h L
2 g 2
© xS
& £28
M Q ummu
: X ~2 Q=E
> = > 2
= =

A

feature
development
merging

time

S

55
2
o ©
> 5
E o
©c
o<
2
ol
Ut

phase
access restricted

maintenance
product freeze

release
phase

product stability
access controlled

alpha
phase
product focus
access unlimited

development
phase

product diversity

access unlimited

activity

VCS commit

<<
<<
A

7 ARCHITECTURE
7 FUNDAMENTALS

Development:
ve op DEV DS YBistbutcn
Build Site

Standard Process

g A

source:pack
pack

source:download

source:track source:unpack
track unpack

source:checkout stageO[:build]
checkout bootstrap
e

source:chec|
checkin

sourc

Packager (Source)

VS

Version
Control

bootstrap:clean %
System §

realclean

stage0:
tstrap:
Vendor

Packager (Binary)
Deployer

Operator

a
o
o
=]
e«
wi
o
o
=
)
>
)
(=)

1 Subversion, Git, Mercurial, Maven, Gradle,
PREPARATION NPM, YARN, UPD, Autoconf, Automake, CMake, OpenPKG RPM

artifact:download

stage2:test

stage2:clean
compile:clean

Assembly Process Architecture

BUILD
PATTERNS

generation

Software Developer
AR Artifact
Repository

artifact:upload

5

Release Engineer
Continuous Integration System
Continuous Deployment System duplication
. fragmentation
transformation
8 integration

elimination

stage5:test
package:test

stage5[:build]
package:pack
package

Bundled stage5:cle; Packaged
package:clean

_operation

stage3:test staged:test
bundle:test

stage4[:build]

C

G5 Riledt

stage3;
link:lint

source
editing

2 BUILDING

Make, Maven, Gradle, Ant/Ivy, k]

NPM, YARN, Docker Build, OpenPKG RPM DISTRIBUTION

TECHNISCHE
UNIVERSITAT
MUNCHEN

lossless

package:upload

(Binary)
Distribution

NSIS, InnoSetup, Tar, InfoZip,
NPM, Maven, Gradle, Docker, OpenPKG Build

Operations:
Deployment
Standard Process

ntime:backup
backup

ROUND TRIP: every forward-
only activity should have a
corresponding backward activity

CONSISTENCY: directly tri‘?gering
an activity causes intermediate

ac es (between old and new

state) to be implicitly triggered first R

DEVELOPMENT: there are
intentional short-circuit
transitions between states

ACTIVITY NAMING: each activity
has at least an official name and
zero or more calling aliases

AUTOMATION: each activity has to
be automated inside a command-
line driven tool (and is just
triggered from a control head tool)

Runping

GLOBAL RULES

stop

OpenRC, SystemD, Init, SupervisorD,

6 RUNTIME OpenPKG RC, Docker

° External State/Resource ’ State Transition
=== State Transition (short-circuit)
Process State
° — State Transition (external)

runtime:restore
restore
runtime:start
start

runtime:reconfigure
reconfigure

install:configure
configure

runtime:stop

5 INSTALLATION

Process Activity
(semi-automated or automated)

Process Activity
(manually or semi-automated)

install:upgrade
upgrade

install:update
update
install:install
stall

Compiled/Linked

B package:unpack P

Bundled Packaged
Instzlled

install:uninstall
uninstall

APT, dpkg, RPM, 4

OpenPKG RPM, Docker RESOLUTION

eta-read

package:download

APT, dpkg, RPM,
OpenPKG Build, Docker

eyl g

oyineun

ybuAdody

07-600C P2IOYINY

1BUSIBAILN BUDSIUYD3] O) Pa!

eys196u3 S Jley 1a Aq O

eydsjebu:

npoidal Joj (NN L) ud
5[2bus,//dn

PanIasay siy

0 S1X31U0D 3INJI3| DU

Artifact Flow

W ARCHITECTURE
7 FUNDAMENTALS

Artifact
Repository
(Development)

Version Control
System
(Development)

Artifact
Repository
(Operations)

y y

SBX Sandbox

Destructive environment mirroring
the Test environment for
demonstration and
experimentation purposes,
including trainings and showcases.

DRY Dry-Run

]
]
]
]
]
]
i
Destructive environment mirroring 1
the Stagln% environment for i
experimentation purposes, -
including operating system and !
major dependency upgrades. i

Envirolnment
Mirroring

FOV ' Failover

Destructive environment mirroring
the Production environment for
failover situation, including
disaster recovery situations.

. . Testing Targets:
(Potentially destructive) 2

Environment for the (s.eparatedi1

development of all artifacts of the

system, typically located on each
eveloper's respective system.

INT Integration

Potentially destructive)

nvironment for integrating all
artifacts of the system, usually
located centrally to the developers
and driven automatically.

TST Test

Environment for testing the
system as a whole in a production-
resembling context.

Operations Environments

STG Staging

Environment for staging the
system as a whole in'a production-
equal context in order to deploy it
to the Production environment
subsequently.

PRD Production

Environment for running the .
system as a whole in production.

Replicated Environments

Original Environments

-

Quality Promise,
Bugfix Effort

Environments & Quality Assurance TLITI

DEV Development

Testing Approaches

Unit
ut Testing

Whitebox testing the inner details
of individual units (components)
against their functional
specification.

Specialization: Regression Testing

Integration
IT Testing

Whitebox testing the outer
interplay of individual units
(components) against the
technical design of the solution.

Specialization: Smoke Testing

System
ST Testing

Blackbox testin% the system as a
whole against the functional and
non-functional requirements of
the solution.

Specialization: Load Testing

(User) Acceptance

UAT Testing
Blackbox testing and formal
approval of the'system as a whole
against the end-to-end
functionality and user experience
requirements.

Operation
oT Testing
Blackbox testin% the system as a

whole against the availability and
proper operation of the intended

services.
Specialization: Service Monitoring

TECHNISCHE
UNIVERSITAT
MUNCHEN

evl [

(2=
=
ol
>a
oa
o

60-6107) #'0'L UOISISA UOIN
-£207) 9'0'L UOISISA U8

Ll

<
S
]
=
Ed
3
N
B
a
o
%
B
5
g8
g
q
i
3
kS
o
=
g
T
g
s
&
3
3
7

%
)

0}
Ileyds[26u3 °S Jjey 10 A €202-810C P1OYINY

Bitdo

UpunNp 1R1ISISAIUN SYISIU
U3 °SJPY 10 6107-8L0C O Y

(WNL) u!

paniasay sybiy ||y ‘<wodijeydsipbus//dny> [|eydsjsh

*AJUO S1X23U02 31N13| 3UBIIS JAINdWIOD) Ul uO%anOJdBJ 10}

ARCHITECTURE ® TECHNISCHE

DevOps Toolchain

u MUNCHEN

Actor-Store Pattern DevOps Pipeline Pattern N
| |

1 Development | Operations
| Ind I 1

1744

Actors

Stores

Actors are linked either by Store-connected artifact flows or by plain triggers.

: The configuration of all Actors and Stores has to be kept as small as possible by just
performing orchestration and retrieving the actual commands via external scripts.

: On each Version Control (VC) commit, the application should be automatically
redeployed as an updated version on the Run-Times (RT).

: Development and Operations can be split via two synchronised Artifact Repositories
(AR), because of network topology constraints, or act on a single common one.

: Deployment on Staging can be triggered automatically or manually.

[o-2)
u T
) ——

<

B

Ul D

N
)

51U0D 3IN1D

AJUO SIX

L.l

ﬁ
ED: Editor / IDE WC: Working Copy Artifact Flow SC: Source Component
Cl: Continuous Integration VC: Version Control Event Flow RT IC: Interm. Component
BX: Build Execution DC: Distribution Copy Control Flow TC: Target Component
CD: Continuous Deployment AR: Artifact Repository

RT: Run-Time DS: Deployment Script

TS: Test Script

DX: Deployment Execution
IA: Infrastructure Automation

4 BS: Build Script
J

Development Operations

/s “eisi - Software Refinement Process TUTI

Develop Tools Build Env. Package Spec. Pack. Framework Operat. System
N\ oop

SpeC|ﬁcat|on Software Soft. Component Soft. Package Soft. Appliance I Hard. Appliance Service
Packaglng i i Installing Q i

Generalization Specialization

oS OE

Operation Env.

HW

Hardware

—_
(9}
i

Building

Software Refinement Value Creation Chain

Software Engineer

o Software Builder

©

oc

S~ 8
v 5
0 ‘
o

v

0 g
(V]

a i

DevOps Engineer

Full-Service Provider

Independent Software Vendor (SV)

,,

|
;::::::::::::::::::::
ot rovider

Companies

77 Datacenter Prowder

W ARCHITECTURE TECHNISCHE

e Software Release Management

n Stage what? Version Number when? Release Phase (p) when? Points-In-Time (PiT) \when? E
WF Wireframe WS Walking Skeleton M Major Version A Alpha C Candidate DEV Development o
N
I

Evolu

Distraction-free low-fidelity illustration Realization of all technical, fundamental Major Version of solution. Usual Early version of the solution with Mature version of solution with Arbitrary permanent points-in-time
of the solution and its base features, aspects of the solution, ensuring the bumped on major technical or domain- incomplete and unstable functionalities complete and stable functionalities to during development. This is the default
displaying its pure structure and core domain specific aspects can be realized specific changes only. A bump resets to get feedback on Rroduct. Usually catch last-minute problems. Usuall: tag for the source code. Intended for no cos
functionality only. later on top of it without problems. the Minor Version and the Revision, too. tagged as “M.NaR" (R > 0). tagged as “M.NrcR” (R > 0) around RTM. availability releases. 283
38g
Minimum-Viable ; ; =2
PT Prototype MVP Jinima N Minor Version B Beta R Release SNP Snapshot io
B2
3258
High-fidelity mostly interactive sample, Early version of solution with just Minor Version of the solution within the Early version of the solution with Release version of the solution with Distinct temporary point-in-time for a EE;
mockup, model or simulation of the enough functionality to enable full turn Major Version. Usually bumped on new complete but still unstable complete and stable functionalities, release of the current version without a SR
solution and its base features, show- of Build-Measure-Learn loop with features. A bump resets the Revision, functionalities to stabilise product. available for production use. Usually version increase. Intended for limited 542
casing its structure and functionality. minimal amount of effort and time. too. Usually tagged as “M.NbR" (R > 0). tagged as“M.N.R" (R >=0). availability releases. 255
3o
g2
PoC ProofofConcept] FP Full Product R Revision REL Release g
Pure realization of most-risky aspects of Final version of the solution with all The Revision of the Release Phase Distinct temporary point-in-time for a EN
the solution, proofing their feasibilities. intended functionality and targeting within Major and Minor Version. release of the current version with a 2
Might still be based on a different the mainstream market. Bumped for every A/B/C/R Release version increase. Intended for early and)
technology than WS, MVP and FP. Phase. general availability releases. =2

BE]

| arbitrary technology |1 target technology |

| 1 |
Product Edition which Availability Scope (S) who? Distribution Channel where?

CE Community

Edition

Edition of the solution for the Open
Source Community. Contains just the
base functionality and has limited

Standard (e} Early Bleed Stable
STD Edition Availability EA Availability BLEED Channel STABLE Channel
Edition of the solution with just the No public availability of solution at all. Early public availability of solution for Distribution channel for all dail Distribution channel for all quarterly
standard functionality and regular The scope for all Development and early market. Usually for Beta or Release snapshots (“YYYY.MM.DD") wit releases (“YYYY.QN") with experimental
support. sometimes Snapshot point-in-times. Candidate levels or for Release and experimental features turned on. features turned off. Intended for fast

>
8
3
g
8
®
8
s
g
g
>
F
a
o

T
3
[cR
z

volunteering support. initial Release Update levels. Intended for testing purposes only. mainstream market and production use.
Enterprise Professional Limited General Edge Solid
EE Edition PRO Edition Availability GA Availability EDGE Channel SOLID Channel
Edition of the solution for the Enterprise Edition of the solution with both the Limited public availability of solution. Late public availability of solution for Distribution channel for all monthly Distribution channel for all (half-)year
market. Contains the base an standard and extra functionalities and Usually for releases after the End-of- mainstream market. Usually for Release releases (“YYYY.MM") with experimental releases (“YYYY[.N]") with experimental
additional functionality and has full extended support. Life-Announcement (EOLA) or for and sometimes just for Release Update features turned on. Intended for early features turned off. Intended for slow
commercial support. releases with specific customer features. levels. market or testing purposes. mainstream market and production use.

paniasay sybIy ||y ‘<wodfleydspbus//~dny> jleydsipbul s jley 1a £702-8107 @ P!

Distribution Channel Artifacts Versioning Scheme (stdver.org) Product Life-Cycle
WD =============p> > + - Release to End-of-Life Last-Order- End-of-
' * Manufactoring ~ Announcement Date Life

STABLE e» an «n =i (RTM) (EOLA) (LOD) (EOL) t

Examples: —‘—0—0—”
EDGE = o, -

1.2a3.20230101+F42A-XA

) XA
BLEED 1.2b3-EA LA) 1 | !

1.2.3-GA i "i - ! 1
6 I 1.2.3 GA = 1 >I |

1 day 4 weeks 3 months

'AUO SIX33U02 3INID3| 2DUBIDS J2INAWOD) Ul UORINPOIdSI J0J (ML) USUPUNA IBHSISAIUN SYDSIU

	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1

