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ACTIVITY NAMING: each activity 
has at least an official name and 
zero or more calling aliases

DEVELOPMENT: there are 
intentional short-circuit
transitions between states

CONSISTENCY: directly triggering 
an activity causes intermediate 
activities (between old and new 
state) to be implicitly triggered first

ROUND TRIP: every forward-
only activity should have a 
corresponding backward activity
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AUTOMATION: each activity has to 
be automated inside a command-
line driven tool (and is just 
triggered from a control head tool)
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Development Environments Testing Approaches

Operations Environments

(Potentially destructive) 
Environment for the (separated) 
development of all artifacts of the 
system, typically located on each 
developer's respective system.

DEV Development

(Potentially destructive) 
Environment for integrating all 
artifacts of the system, usually 
located centrally to the developers 
and driven automatically.

INT Integration

Environment for testing the 
system as a whole in a production-
resembling context.

TST Test

Environment for staging the 
system as a whole in a production-
equal context in order to deploy it 
to the Production environment 
subsequently.

STG Staging

Destructive environment mirroring 
the Staging environment for 
experimentation purposes, 
including operating system and 
major dependency upgrades.

DRY Dry-Run

Environment for running the 
system as a whole in production.

PRD Production

Destructive environment mirroring 
the Production environment for 
failover situation, including 
disaster recovery situations.

FOV Failover

Whitebox testing the inner details 
of individual units (components) 
against their functional 
specification.
Specialization: Regression Testing

UT Unit
Testing

Whitebox testing the outer 
interplay of individual units 
(components) against the 
technical design of the solution.
Specialization: Smoke Testing

IT Integration
Testing

Blackbox testing the system as a 
whole against the functional and 
non-functional requirements of 
the solution.
Specialization: Load Testing

ST System
Testing

Blackbox testing and formal 
approval of the system as a whole 
against the end-to-end 
functionality and user experience 
requirements.

UAT (User) Acceptance
Testing

Destructive environment mirroring 
the Test environment for 
demonstration and 
experimentation purposes, 
including trainings and showcases.

SBX Sandbox

Blackbox testing the system as a 
whole against the availability and 
proper operation of the intended 
services.
Specialization: Service Monitoring
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Rule 1:   Actors are linked either by Store-connected artifact !ows or by plain triggers.
Rule 2:   The con"guration of all Actors and Stores has to be kept as small as possible by just
                performing orchestration and retrieving the actual commands via external scripts.
Rule 3:   On each Version Control (VC) commit, the application should be automatically
                redeployed as an updated version on the Run-Times (RT).
Rule 4:   Development and Operations can be split via two synchronised Artifact Repositories
                (AR), because of network topology constraints, or act on a single common one.
Rule 5:   Deployment on Staging can be triggered automatically or manually.
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Distraction-free low-fidelity illustration 
of the solution and its base features, 
displaying its pure structure and core 
functionality only.

WF Wireframe

High-fidelity mostly interactive sample, 
mockup, model or simulation of the 
solution and its base features, show-
casing its structure and functionality.

PT Prototype

Pure realization of most-risky aspects of 
the solution, proofing their feasibilities. 
Might still be based on a different 
technology than WS, MVP and FP.

PoC Proof of Concept

Realization of all technical, fundamental 
aspects of the solution, ensuring the 
domain specific aspects can be realized 
later on top of it without problems.

WS Walking Skeleton

Early version of solution with just 
enough functionality to enable full turn 
of Build-Measure-Learn loop with 
minimal amount of effort and time.

MVP Minimum-Viable
Product

Final version of the solution with all 
intended functionality and targeting 
the mainstream market.

FP Full Product

Early version of the solution with 
incomplete and unstable functionalities 
to get feedback on product. Usually 
tagged as “M.NaR” (R > 0).

A Alpha

Early version of the solution with 
complete but still unstable 
functionalities to stabilise product. 
Usually tagged as “M.NbR” (R > 0).

B Beta

Mature version of solution with 
complete and stable functionalities to 
catch last-minute problems. Usually 
tagged as “M.NrcR” (R > 0) around RTM.

C Candidate

Release version of the solution with 
complete and stable functionalities, 
available for production use. Usually 
tagged as “M.N.R” (R >= 0).

R Release

Arbitrary permanent points-in-time 
during development. This is the default 
tag for the source code. Intended for no 
availability releases.

DEV Development

Distinct temporary point-in-time for a 
release of the current version without a 
version increase. Intended for limited 
availability releases.

SNP Snapshot

Distinct temporary point-in-time for a 
release of the current version with a 
version increase. Intended for early and 
general availability releases.

REL Release

Edition of the solution for the Open 
Source Community. Contains just the 
base functionality and has limited 
volunteering support.

CE Community
Edition

Edition of the solution for the Enterprise 
market. Contains the base and 
additional functionality and has full 
commercial support.

EE Enterprise
Edition

No public availability of solution at all. 
The scope for all Development and 
sometimes Snapshot point-in-times.

XA No
Availability

Limited public availability of solution. 
Usually for releases after the End-of-
Life-Announcement (EOLA) or for 
releases with specific customer features.

LA Limited
Availability

Early public availability of solution for 
early market. Usually for Beta or Release 
Candidate levels or for Release and 
initial Release Update levels.

EA Early
Availability

Late public availability of solution for 
mainstream market. Usually for Release 
and sometimes just for Release Update 
levels.

GA General
Availability

Distribution channel for all quarterly 
releases (“YYYY.QN”) with experimental 
features turned off. Intended for fast 
mainstream market and production use.

STABLE Stable
Channel

Distribution channel for all monthly 
releases (“YYYY.MM”) with experimental 
features turned on. Intended for early 
market or testing purposes.

EDGE Edge
Channel

Distribution channel for all daily 
snapshots (“YYYY.MM.DD”) with 
experimental features turned on. 
Intended for testing purposes only.

BLEED Bleed
Channel

Evolution Stage Release Phase (p) Points-In-Time (PiT)

Availability Scope (S)Product Edition Distribution Channel

Distribution Channel Artifacts Versioning Scheme (stdver.org) Product Life-Cycle

Examples:
1.2a3.20230101+F42A-XA
1.2b3-EA
1.2.3-GA
1.2.3

Version Number

Major Version of solution. Usually 
bumped on major technical or domain-
specific changes only. A bump resets 
the Minor Version and the Revision, too.

M Major Version

Minor Version of the solution within the 
Major Version. Usually bumped on new 
features. A bump resets the Revision, 
too.

N Minor Version

The Revision of the Release Phase 
within Major and Minor Version. 
Bumped for every A/B/C/R Release 
Phase.

R Revision

Edition of the solution with just the 
standard functionality and regular 
support.

STD Standard
Edition

Edition of the solution with both the 
standard and extra functionalities and 
extended support.

PRO Professional
Edition

Release to
Manufactoring

(RTM)

End-of-Life
Announcement

(EOLA)

Last-Order-
Date
(LOD)

End-of-
Life

(EOL)

XA
LA

GA
EA

t

BLEED

EDGE

STABLE

3 months4 weeks1 day

Distribution channel for all (half-)year 
releases (“YYYY[.N]”) with experimental 
features turned off. Intended for slow 
mainstream market and production use.

SOLID Solid
Channel

SOLID

Which? Who? Where?

When?What? When?When?

arbitrary technology target technology
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