
Software Engineering in der industriellen Praxis (SEIP)

Thank you for �ying Industry Airlines.
Lecture End

To be continued.
Lecture Gap

Let’s have a meal!
LUNCH

Let’s breathe deeply!
BREAK

Fasten your seatbelts, please.
Lecture Start

Dr. Ralf S. Engelschall

M.N branch

trunk
(M branch)

feature
development

merging
M.N.0

time

bug!x
maintenance

merges
M.NbK-S-

YYYYMMDD

M.NbK-D

M.N.K.1

upstream vendor
tracking branch

alpha
phase

beta
phase

release
candidate

phase

release
phase

development
phase

maintenance
phase

product diversity
access unlimited

product focus
access unlimited

product stability
access controlled

product freeze
access restricted

VCS commit
activity

M.N.1

M.N.K[.0]

M.N.0.1

M.N.0.K

M.N.K.K

M.N.K branch

M.Na1 M.NaK M.Nb1 M.NbK
M.Nrc1

M.NrcK

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.3.0 (2012-09-19), Authored 2011-2012 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.2.1 (2012-09-19), Copyright ©

 2008-2012 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
14.1

Version Control Architecture

source:checkout
checkout

source:checkin
checkin

F

stage0[:build]
bootstrap
generate

source:unpack
unpack

stage0:clean
bootstrap:clean

realclean

stage1[:build]
setup

configure

stage1:clean
setup:clean
distclean

S

stage2[:build]
compile

stage2:clean
compile:clean

clean

C

stage3[:build]
link

build

stage3:clean
link:clean

L

stage4[:build]
bundle

all

stage4:clean
bundle:clean

B

artifact:uploadartifact:download

source:pack
pack

source:downloadsource:upload

stage5[:build]
package:pack

package

stage5:clean
package:clean

P package:upload

package:downloadI

DS

VCS

AR

install:uninstall
uninstall

install:install
install

package:unpack PB

install:update
update

install:upgrade
upgrade

install:migrate
migrate

install:repair
repair

runtime:stop
stop

install:validate
validate

runtime:start
start

runtime:reload
reload

runtime:scrub
scrub

R

X

X
XXXExternal State/Resource

Process State

State Transition Process Activity
(semi-automated or automated)

runtime:status
status

source
editing

runtime:test
test

stage2:test
compile:test

stage3:test
link:test

test

stage4:test
bundle:test

stage5:test
package:test

S
C

3:
 D

ev
el

op
er

 S
ho

rt-
C

irc
ui

t T
ra

ns
iti

on

S
C

4:
 D

ev
el

op
er

 S
ho

rt-
C

irc
ui

t T
ra

ns
iti

on

S
C

1:
 D

ev
el

op
er

 S
ho

rt-
C

irc
ui

t T
ra

ns
iti

on

State Transition (short-circuit)
State Transition (external)

Development:
Build
Standard Process

Operations:
Deployment
Standard Process

generation

op
er

at
io

n

mode

lossless lossy

fragmentation

transformation

duplication

integration

elimination

Examples:
editing from scratch
making random data

Examples:
downloading
uploading

Examples:
unpacking archive

Examples:
object extraction

Examples:
format changing
recoding

Examples:
source compilation
parsing

Examples:
linking objects

Examples:
packing archive

Examples:
cleaning up

BUILD
PATTERNS

source:track
track

Subversion, Git, Mercurial, Maven, Gradle,
NPM, YARN, UPD, Autoconf, Automake, CMake, OpenPKG RPM

APT, dpkg, RPM,
OpenPKG Build, Docker

APT, dpkg, RPM,
OpenPKG RPM, Docker

OpenRC, SystemD, Init, SupervisorD,
OpenPKG RC, Docker

1

1 2 3

1 3

4 5

6

Vendor

Packager (Source)

Packager (Binary)

Deployer

Operator

2

Archived

InstalledRunning
Bundled Packaged

C / L / B

Compiled/Linked

S
C

2:
 D

ev
el

op
er

 S
ho

rt-
C

irc
ui

t T
ra

ns
iti

on

ACTIVITY NAMING: each activity
has at least an official name and
zero or more calling aliases

DEVELOPMENT: there are
intentional short-circuit
transitions between states

CONSISTENCY: directly triggering
an activity causes intermediate
activities (between old and new
state) to be implicitly triggered first

ROUND TRIP: every forward-
only activity should have a
corresponding backward activity

G
LO

BA
L

RU
LE

S

package:meta-write

package:meta-read

1. edit
2. compile
3. start
4. stop

D
EV

EL
O

PE
R

LO
O

P

PREPARATION1 2 BUILDING DISTRIBUTION3

5 INSTALLATIONRUNTIME6 4 RESOLUTION

NSIS, InnoSetup, Tar, InfoZip,
NPM, Maven, Gradle, Docker, OpenPKG Build

stage2:lint
compile:lint

lint

stage1:lint
setup:lint

stage3:lint
link:lint

stage4:lint
bundle:lint

Setup Compiled Linked

stage5:lint
package:lint

Bundled

stage0:lint
bootstrap:lintsource:lint

Artifact
Repository

(Binary)
Distribution

Site

(Source)
Distribution

Site

Version
Control
System

Fresh Bootstrapped

Make, Maven, Gradle, Ant/Ivy,
NPM, YARN, Docker Build, OpenPKG RPM

runtime:reconfigure
reconfigure

install:configure
configure

runtime:backup
backup

runtime:restore
restore

XXX
Process Activity
(manually or semi-automated)

A B
A A B

A

B

DS

B
Packaged

1

4

31

3

Software Developer

Continuous Integration System

Continuous Deployment System

2

Release Engineer 1 2

2

65

AUTOMATION: each activity has to
be automated inside a command-
line driven tool (and is just
triggered from a control head tool)

DEV

OPS

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.3.3 (2020-12-19), Authored 2009-2020 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.3.2 (2023-11-26), Copyright ©

 2009-2023 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
14.2

Assembly Process Architecture

2

1

Development Environments Testing Approaches

Operations Environments

(Potentially destructive)
Environment for the (separated)
development of all artifacts of the
system, typically located on each
developer's respective system.

DEV Development

(Potentially destructive)
Environment for integrating all
artifacts of the system, usually
located centrally to the developers
and driven automatically.

INT Integration

Environment for testing the
system as a whole in a production-
resembling context.

TST Test

Environment for staging the
system as a whole in a production-
equal context in order to deploy it
to the Production environment
subsequently.

STG Staging

Destructive environment mirroring
the Staging environment for
experimentation purposes,
including operating system and
major dependency upgrades.

DRY Dry-Run

Environment for running the
system as a whole in production.

PRD Production

Destructive environment mirroring
the Production environment for
failover situation, including
disaster recovery situations.

FOV Failover

Whitebox testing the inner details
of individual units (components)
against their functional
specification.
Specialization: Regression Testing

UT Unit
Testing

Whitebox testing the outer
interplay of individual units
(components) against the
technical design of the solution.
Specialization: Smoke Testing

IT Integration
Testing

Blackbox testing the system as a
whole against the functional and
non-functional requirements of
the solution.
Specialization: Load Testing

ST System
Testing

Blackbox testing and formal
approval of the system as a whole
against the end-to-end
functionality and user experience
requirements.

UAT (User) Acceptance
Testing

Destructive environment mirroring
the Test environment for
demonstration and
experimentation purposes,
including trainings and showcases.

SBX Sandbox

Blackbox testing the system as a
whole against the availability and
proper operation of the intended
services.
Specialization: Service Monitoring

OT Operation
Testing

DEV INT TST SBX

Version Control
System

(Development)

Artifact
Repository

(Development)

Artifact
Repository

(Operations)

DRYSTG PRD FOV

Testing Targets:

Environment
Mirroring

Ar
tif

ac
t F

lo
w

Original EnvironmentsReplicated Environments

Quality Promise,
Bugfix Effort

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.6 (2023-11-26), Authored 2018-2023 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.4 (2019-09-15), Copyright ©

 2018-2019 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
14.3

Environments & Quality Assurance

Development Environment Production Environment

Operations

Staging EnvironmentIntegration Environment

Development

Test Environment

ED

VC

AR

RT

CI

AR

BX

CD

DX

RT RT RT RT

BX

CD

DX

IA

DX

WC

SC

DS

BS

TC

DS

SC
BS

DS

DX

TC

TC

DC

CD

DX

DSTC

SC

BS

DS

SC
BS

DS

Users
Testers

Developers

D
ev

el
op

er

Administrator

TC

ICIC

DSTC

DS

RTVC AR

CI CD

OperationsDevelopment

DevOps Pipeline Pattern

Ac
to

rs
St

or
esS S

A

Actor-Store Pattern

Ac
to

rs
St

or
es

TC

DSTC

TC

Rule 1: Actors are linked either by Store-connected artifact !ows or by plain triggers.
Rule 2: The con"guration of all Actors and Stores has to be kept as small as possible by just
 performing orchestration and retrieving the actual commands via external scripts.
Rule 3: On each Version Control (VC) commit, the application should be automatically
 redeployed as an updated version on the Run-Times (RT).
Rule 4: Development and Operations can be split via two synchronised Artifact Repositories
 (AR), because of network topology constraints, or act on a single common one.
Rule 5: Deployment on Staging can be triggered automatically or manually.

Rules

ED: Editor / IDE
CI: Continuous Integration
BX: Build Execution
CD: Continuous Deployment
DX: Deployment Execution
IA: Infrastructure Automation

Actors
WC: Working Copy
VC: Version Control
DC: Distribution Copy
AR: Artifact Repository
RT: Run-Time

Stores
SC: Source Component
IC: Interm. Component
TC: Target Component
BS: Build Script
DS: Deployment Script
TS: Test Script

ArtifactsFlows
Artifact Flow
Event Flow
Control Flow

TC

TC

IC IC

TS TS

TS

TS

TS

TS

TSTS

DSTC

TS

DSTC

TS

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.2 (2020-12-19), Authored 2019-2020 by D
r. Ralf S. Engelschall w

ith input from
 Christian Reiber and D

r. Thom
as Schöpf

G
raphical Illustration: Version 1.0.2 (2020-10-11), Copyright ©

 2019-2020 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
14.4

DevOps Toolchain

Software Engineer

Software Builder

Software Packager

Solution Engineer

System Integrator

System Engineer

System Administrator

SpecializationGeneralization
Software Re�nement Value Creation Chain

SN C B P A D I OSW SC SP SS HA SV

DT BE PS PF OS HW OE

SA

Independent Software Vendor (ISV)
Operating System Vendor

System Integrator

Value Added Reseller (VAR)

Managed Hosting Provider

Datacenter Provider

Software Distribution Vendor

Develop. Tools Build Env. Package Spec. Pack. Framework Operat. System Hardware Operation Env.

Speci�cation Software Soft. Component Soft. Package Software Stack Soft. Appliance Hard. Appliance Service

Pe
rs

on
s/

Ro
le

s
Co

m
pa

ni
es

Coding DeployingPackagingBuilding Assembling Installing Operating

DevOps Engineer

Full-Service Provider

Licensed to Augsburg U
niversity for reproduction in Com

puter Science lecture contexts only..
Licensed to Technische U

niversität M
ünchen (TU

M
) for reproduction in Com

puter Science lecture contexts only.
Licensed to m

sg system
s ag for reproduction in m

sg Applied Technology Research training contexts only.

Ra
lf S

. Engelschall Signature Series Orig
in

al

Intellectual Content: Version 1.3.0 (2019-10-31), Authored 2006-2019 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.3..0 (2019-10-31), Copyright ©

 2006-2019 D
r. Ralf S. Engelschall <

http://engelschall.com
>

, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
15.1

A
F

Software Re�nement Process
1 23

Distraction-free low-fidelity illustration
of the solution and its base features,
displaying its pure structure and core
functionality only.

WF Wireframe

High-fidelity mostly interactive sample,
mockup, model or simulation of the
solution and its base features, show-
casing its structure and functionality.

PT Prototype

Pure realization of most-risky aspects of
the solution, proofing their feasibilities.
Might still be based on a different
technology than WS, MVP and FP.

PoC Proof of Concept

Realization of all technical, fundamental
aspects of the solution, ensuring the
domain specific aspects can be realized
later on top of it without problems.

WS Walking Skeleton

Early version of solution with just
enough functionality to enable full turn
of Build-Measure-Learn loop with
minimal amount of effort and time.

MVP Minimum-Viable
Product

Final version of the solution with all
intended functionality and targeting
the mainstream market.

FP Full Product

Early version of the solution with
incomplete and unstable functionalities
to get feedback on product. Usually
tagged as “M.NaR” (R > 0).

A Alpha

Early version of the solution with
complete but still unstable
functionalities to stabilise product.
Usually tagged as “M.NbR” (R > 0).

B Beta

Mature version of solution with
complete and stable functionalities to
catch last-minute problems. Usually
tagged as “M.NrcR” (R > 0) around RTM.

C Candidate

Release version of the solution with
complete and stable functionalities,
available for production use. Usually
tagged as “M.N.R” (R >= 0).

R Release

Arbitrary permanent points-in-time
during development. This is the default
tag for the source code. Intended for no
availability releases.

DEV Development

Distinct temporary point-in-time for a
release of the current version without a
version increase. Intended for limited
availability releases.

SNP Snapshot

Distinct temporary point-in-time for a
release of the current version with a
version increase. Intended for early and
general availability releases.

REL Release

Edition of the solution for the Open
Source Community. Contains just the
base functionality and has limited
volunteering support.

CE Community
Edition

Edition of the solution for the Enterprise
market. Contains the base and
additional functionality and has full
commercial support.

EE Enterprise
Edition

No public availability of solution at all.
The scope for all Development and
sometimes Snapshot point-in-times.

XA No
Availability

Limited public availability of solution.
Usually for releases after the End-of-
Life-Announcement (EOLA) or for
releases with specific customer features.

LA Limited
Availability

Early public availability of solution for
early market. Usually for Beta or Release
Candidate levels or for Release and
initial Release Update levels.

EA Early
Availability

Late public availability of solution for
mainstream market. Usually for Release
and sometimes just for Release Update
levels.

GA General
Availability

Distribution channel for all quarterly
releases (“YYYY.QN”) with experimental
features turned off. Intended for fast
mainstream market and production use.

STABLE Stable
Channel

Distribution channel for all monthly
releases (“YYYY.MM”) with experimental
features turned on. Intended for early
market or testing purposes.

EDGE Edge
Channel

Distribution channel for all daily
snapshots (“YYYY.MM.DD”) with
experimental features turned on.
Intended for testing purposes only.

BLEED Bleed
Channel

Evolution Stage Release Phase (p) Points-In-Time (PiT)

Availability Scope (S)Product Edition Distribution Channel

Distribution Channel Artifacts Versioning Scheme (stdver.org) Product Life-Cycle

Examples:
1.2a3.20230101+F42A-XA
1.2b3-EA
1.2.3-GA
1.2.3

Version Number

Major Version of solution. Usually
bumped on major technical or domain-
specific changes only. A bump resets
the Minor Version and the Revision, too.

M Major Version

Minor Version of the solution within the
Major Version. Usually bumped on new
features. A bump resets the Revision,
too.

N Minor Version

The Revision of the Release Phase
within Major and Minor Version.
Bumped for every A/B/C/R Release
Phase.

R Revision

Edition of the solution with just the
standard functionality and regular
support.

STD Standard
Edition

Edition of the solution with both the
standard and extra functionalities and
extended support.

PRO Professional
Edition

Release to
Manufactoring

(RTM)

End-of-Life
Announcement

(EOLA)

Last-Order-
Date
(LOD)

End-of-
Life

(EOL)

XA
LA

GA
EA

t

BLEED

EDGE

STABLE

3 months4 weeks1 day

Distribution channel for all (half-)year
releases (“YYYY[.N]”) with experimental
features turned off. Intended for slow
mainstream market and production use.

SOLID Solid
Channel

SOLID

Which? Who? Where?

When?What? When?When?

arbitrary technology target technology

[][M N p R . D + H - S.][]

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.8 (2019-11-16), Authored 2018-2019 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.1.7 (2023-11-26), Copyright ©

 2018-2023 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
15.2

Software Release Management

	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1

