
Dr. Ralf S. Engelschall

Software Engineering
in der industriellen Praxis

(SEIP)



The Version Control is about the consequent
versioning of all source code artifacts in a Version
Control System (VCS), like Subversion or Git. One uses
five different kinds of Branches in a VCS: Vendor-
Branch, Trunk (or M Branch), Feature-Branch, Release-
Branch (or M.N Branch) and Hotfix Branch (or M.N.K
Branch).

The Vendor Branch (or Upstream Vendor Tracking
Branch) holds the unmodified copies from third-party
sources. Its data is regularly integrated into the Trunk to
be modified there, if necessary. It exists as long as the
product itself. A classic use case consists of third-party
libraries that have to be modified.

The Trunk or M Branch (called trunk with Subversion
and master or main with Git) at any time keeps the
current integrated state of the next major version (“M”)
of the product. It exists as long as the product itself.

A Feature-Branch is always forked from the Trunk (or
even from another Feature-Branch). It contains the
changes during the development of a new feature, in
case it is more extensive, or has to be developed over a
longer period of time, or needs to be developed by
more than one person. It is regularly updated with the
changes of the Trunk (in Git by “merging” or
“rebasing”), integrated into the Trunk at the end of the
feature development, and then usually deleted again.

A Release-Branch or M.N Branch is forked from the
Trunk, usually after the Beta phase (“M.NbK”) and
before the Release Candidate phase (“M.Nrc1”). It
regularly receives from the Trunk bugfixes through so-
called “cherry picking” of changes. On it, the release
versions “M.N.K” are created. The “M.N Branch” exists as
long as the “M.N” version of the product is not yet “end-
of-life.”

A Hotfix Branch or M.N.K Branch is forked from the
“M.N Branch” as needed, usually directly from the “M.N
Branch,” usually directly before the need for a first
Hotfix “M.N.K.1”. It exists as long as Hotfixes for the
release version, “M.N.K” have to be provided.

Questions

Which five Types of Branches are known in a
Version Control System“?



Which Type of Branch in a Version Control
System is usually deleted after successful
integration?



Between which two temporal Phases of the
Release Management is the Release Branch in a
Version Control System usually forked off from
the Trunk?





In the Assembly Process Architecture, a DevOps
Pipeline is used to automatically transition a version of
a software product from the sources in the Version
Control System to the running instance in operation.

The Dev(elopment) part of the DevOps Pipeline, the
so-called Build Standard Process, is usually automated
via Continuous Integration (CI). The Op(eration)s part
of the DevOps Pipeline, the so-called Deployment
Standard Process, is usually automated via Continuous
Integration (CI). Deployment Standard Process, is
usually automated via Continuous Deployment (CD).
All activities of the DevOps Pipeline are automated via
specialized build and deployment tools and these
activities are automatically executed in a CI/CD system
after each change in the Version Control System.

In particular, the Assembly Process should enable a
meaningful Round Trip, in that the process is
understood as a state machine and for all (forward)
activities there are meaningful associated backward
activities are existing. If a certain target state is
externally requested, all intermediate activities
between the source and the target state are implicitly
executed.

For productivity or the most efficient “Developer Loop”
possible in software development, up to four Short
Circuit Transitions are supported, with which a
deliberate “Shortcut” from the Build Standard Process
to the Deployment Standard Process can be made.

The Assembly Process Architecture makes use of four
different types of external storage locations: the
Version Control System stores the “bare” source files,
the (Source) Distribution Site stores the “source
distribution” of the source files prepared for the build
process, the Artifact Repository stores reused build
artifacts (especially libraries) and the (Binary)
Distribution Site stores the “binary distribution” of the
product intended for deployment.

The first three locations are mainly used for passing
data between different people. The last one is mainly
used for passing data between Dev(elopment) and
Op(eration)s.

Questions

Why should in the Assembly Process Architecture
up to four so-called Short-Circuit Transitions be
supported to shortcut from the Build Standard
Process to the Deployment Standard Process?



What are the four types of external storage
locations supported by the Assembly Process
Architecture?





In practice, a distinction is usually made between 4
Development Environments, 4 Operations
Environments and 5 associated Testing Approaches.

The Development Environments are Development
(e.g., the computer of the developer), Integration (e.g.,
a central server with a Continuous Integration (CI)
system), Test (e.g., a central server that resembles the
Production environment, but is not a copy of it) and
possibly Sandbox (e.g., a server that is a copy of Test for
training and show-cases).

The Operations Environments are Staging (a copy of
Production), Dry-Run (a 1:1 copy of Staging),
Production (the regular production environment) and
Failover (a 1:1 copy of Production).

The Testing Approaches are Unit Testing for the
functionality of components on the Development (and
possibly Integration) environment, Integration Testing
for the interaction of components on Integration (and
if applicable Development) environment, System
Testing for the functional and non-functional
properties of the overall system on Test (and Staging if
applicable) environment, (User) Acceptance Testing for
the “end-to-end” functionality of the overall system on
Staging (or Production if applicable) environment and
Operation Testing for the availability of the overall
system on the overall system on the Production
environment.

As transfer points for the artifacts between the 8
environments serve a Version Control System and an
Artifact Repository on the side of the Development
Environments and a corresponding Artifact
Repository on the side of the Operations
Environments.



To support a DevOps approach on the tool-side as well,
a DevOps Toolchain is advised to be used. At its core,
this is based on a pattern in which an Actor acts
between two Stores in each case by taking one or
more Artifacts as input from a Store, processes these
and writing one or more Artifacts as an output to
another Store. Additionally, Actors can be triggered by
Events or can be controlled directly by different groups
of people through interactions.

This basic pattern is now combined to a DevOps
Pipeline Pattern, where every “Commit” of a
Developer in a Version Control (VC) system triggers an
automatic compilation and integration process of an
application in a Continuous Integration (CI) system.
The results of this process are stored in an Artifact
Repository (AR), which in turn triggers an automatic
installation process in a Continuous Deployment (CD)
system. The result is the installed application on a Run-
Time (RT) system, which can be accessed by Testers
and Users.

Logically, the systems VC and CI belong to the area
Development, while the CD and RT systems belong to
the Operations area. The AR system, on the other hand,
is used by both areas as a common transfer point. Since
in practice, the DevOps Toolchain is not on a single
Environment, but is usually distributed on the logically
(or even physically) separated Environments
Development, Integration, Testing, Staging and
Production, some systems exist multiple times.

We distinguish the Artifacts between Source
Component (foo.java), Intermediate Component
(foo.jar) and Target Component (foo.exe) and,
on the other hand, between Build Script (foo.make),
Deployment Script (foo.spec) and Test Script (foo-
test.java).

Note intentional special cases: The Development
Environment is different because it allows a fast “edit-
build-install-start-stop” loop. The AR system can exist 1
or 2 times, depending on how strongly interweaved
Development and Operations are. Deployment in the
Production Environment should be manually
triggered via an Infrastructure Automation system.

Questions

Which two Actor systems control in the DevOps
Pipeline Pattern the automated integration and
installation process?





Software Development is, in principle, a refinement
process in which from the Specification to the Service
various steps are performed, which represents a kind of
Value Creation Chain.

In each step of the Value Creation Chain, the previous
artifact is is “refined” with the help of added resources.
The first steps first generalize the very concrete
Specification to the maximum reusable Software
Package. After that, the following steps specialize the
Software Package again up to the concrete Service.

The Value Creation Chain is supported by various
groups of people or roles and companies.

Questions

Software Development can be understood as a
Value Creation Chain. Which artifact is the
maximum reusable?





In Software Release Management, Releases of
software products are controlled by 7 dimensions,
which identify the release via a well-defined Version
Schema.

The dimension Evolution Stages is about the type and
development stage of the product. A distinction is
made between the (partly not yet based on the later
technology) pre-stages Wireframe, Prototype and
Proof of Concept and the production-ready stages
(which are based on the target technology) Walking
Skeleton, Minimum-Viable Product and Full Product.

In the Version Number dimension, the product is
identified by three numbers: Major Version, Minor
Version, and Revision. The first two refer to the content
of the product. The latter refers to the respective
Maturity Level of the product. The Maturity Levels
dimension itself defines the maturity of the product
within the Major/Minor Version: Alpha (a, incomplete,
unstable), Beta (b, complete, unstable), Release
Candidate (rc, complete, stable), Release and Release
Update.

The dimension Points-In-Time tells you whether the
current release has the status Development (as the
product is in the VCS), whether it is a special Snapshot
(e.g., for extremely time-critical hotfixes or early
feedbacks) or if it is a normal Release.

The dimension Product Editions defines the edition or
variant of the product: usually Community/Enterprise
Edition (with focus on the target market) or Standard/
Professional Edition (with the focus on the range of
functions).

The dimension Availability Scopes defines for whom
the release of the product is available: No Availability
(only for the manufacturer internally), Limited
Availability (for special situations), Early Availability
(for early adopters among customers) and General
Availability (for all customers). Usually, the Availability
Scopes are used for specific Maturity Levels, but there
is no necessary connection.

The dimension Distribution Channels defines over
which channels the release is available: Bleed Channel
(for “Visionaries” and “Die Hards”), Edge Channel (for
“Early Adopters”), Stable Channel and and Solid
Channel (for all customers). In any case, the
Distribution Channels should be directly linked to the
branches of the VCS.

Questions

At which Maturity Level in Software Release
Management does one have an incomplete and
unstable functionality?



At what Maturity Level in Software Release
Management does one have complete but usually
still unstable functionality?




	Questions
	Questions
	Questions
	Questions
	Questions

