TECHNISCHE
MUNCHEN

Software Engineering

in der industriellen Praxis
(SEIP)

Dr. Ralf S. Engelschall

[< =i \Jersion Control Architecture TUTI -

M.N.KL.0]

feature bugfix
development maintenance
merging merges
M.NDbK-S-
YYYYMMDD
trunk
M.Na1 M.NaK M.Nb1 M.NbK (M branch)
| I—
M.NbK-D
upstream vendor
tracking branch
< > > > > 4—>< >
development alpha beta release |release maintenance
phase phase phase candidate ' phase phase
— ~- ~IL- o g Phase ~
- product diversity g product focus = ‘product stabilityr ™ product freeze i
access unlimited access unlimited access controlled access restricted
VCS commit
activity

-

~—

)

- time

The Version Control is about the consequent
versioning of all source code artifacts in a Version
Control System (VCS), like Subversion or Git. One uses
five different kinds of Branches in a VCS: Vendor-
Branch, Trunk (or M Branch), Feature-Branch, Release-
Branch (or M.N Branch) and Hotfix Branch (or M.N.K
Branch).

The Vendor Branch (or Upstream Vendor Tracking
Branch) holds the unmodified copies from third-party
sources. Its data is regularly integrated into the Trunk to
be modified there, if necessary. It exists as long as the
product itself. A classic use case consists of third-party
libraries that have to be modified.

The Trunk or M Branch (called trunk with Subversion
and master or main with Git) at any time keeps the
current integrated state of the next major version (“M")
of the product. It exists as long as the product itself.

A Feature-Branch is always forked from the Trunk (or
even from another Feature-Branch). It contains the
changes during the development of a new feature, in
case it is more extensive, or has to be developed over a
longer period of time, or needs to be developed by
more than one person. It is regularly updated with the
changes of the Trunk (in Git by “merging” or
“rebasing”), integrated into the Trunk at the end of the
feature development, and then usually deleted again.

A Release-Branch or M.N Branch is forked from the
Trunk, usually after the Beta phase (“M.NbK") and
before the Release Candidate phase (“M.Nrc1”). It
regularly receives from the Trunk bugfixes through so-
called “cherry picking” of changes. On it, the release
versions “M.N.K" are created. The “M.N Branch” exists as
long as the “M.N" version of the product is not yet “end-
of-life”

A Hotfix Branch or M.N.K Branch is forked from the
“M.N Branch” as needed, usually directly from the “M.N
Branch,” usually directly before the need for a first
Hotfix “M.N.K.1" It exists as long as Hotfixes for the
release version, “M.N.K" have to be provided.

Questions

@© Which five Types of Branches are known in a
Version Control System*?

© Which Type of Branch in a Version Control

System is usually deleted after successful

integration?

Between which two temporal Phases of the
Release Management is the Release Branch in a
Version Control System usually forked off from
the Trunk?

e weens Assemibly Process Architecture TUTI -

Development: - Sof 2 BUILD
e DEV 5 Y P

Standard Process : '
H
==
|
:
N
W AN s

sourcepack
pack

sourceunpack
unpack

H
sourcetrack stageztest stage3iest stagedest stagesiest
linkctest
track compileitest e bundletest packagetest
3 StageOCbuld] Stagelbbuld] - Stage3Cbuld] Stagedlbuld] StagesCbuld)
‘°“:‘h:::t"“' bootstrap t "“:::.L‘":‘."d] link bundle package;pack
generate P! build all package
F Stagediclean StageTiclean StageZclean € 2 5
sourcescheckin i oo e e g e tm - stagesiclean stagediclean s stagesiclean o
checkin i ‘ linkclean bundlecclean package:clean
realclean distclean dean g

it stage0iint - stage3iint stageddint stagesiint
sourcerlint bootstrapint linklint bundle:lint packageilint
ource A
editing

1 Subversion, Git, Mercurial, Maven, Gradle, 2 Make, Maven, Gradle, Ant/lvy, 3 NSIS, InnoSetup, Tar, InfoZip,
PREPARATION NPM, YARN, UPD, Autoconf, Automake, CMake, OpenPKG RPM BUILDING NPM, YARN, Docker Build, OpenPKG RPM. DISTRIBUTION NPM, Maven, Gradle, Docker, OpenPKG Build

= e

stagellint
setupiint

DEVELOPER LOOP

Operations:

Deployment runtime:backup
Standard Process backup

runtimesrestore install:upgrade
restore upgrade

ROUND a
only activity should have a runtimertest

test

corresponding backward activity {
directly triggering
ivity i iate
activities (between old and new
state) Pl 9

package:unpack

intentional short-circuit

5
2
3
S
°

MING: each activity runtimereload runtimestop installuninstall
reload stop uninstall

ACTIVITY NA
has at least an official name and
has rcaln

'AUTOMATION: each activity has to
ated inside a command-

fine driven tool (and s just

triggered from a contral head tool)

runtime:scrub. install:migrate. install:validate install:repair
scrub migrate. validate repair

External State/Resource —® State Transition XXX Process Activity
8 Process State i dliietod (e;te:na‘l) K ;’rooessActivity .or
(manually or semi-automated)
In the Assembly Process Architecture, a DevOps The Assembly Process Architecture makes use of four
Pipeline is used to automatically transition a version of different types of external storage locations: the
a software product from the sources in the Version Version Control System stores the “bare” source files,
Control System to the running instance in operation. the (Source) Distribution Site stores the “source
distribution” of the source files prepared for the build
The Dev(elopment) part of the DevOps Pipeline, the process, the Artifact Repository stores reused build
so-called Build Standard Process, is usually automated artifacts (especially libraries) and the (Binary)
via Continuous Integration (Cl). The Op(eration)s part Distribution Site stores the “binary distribution” of the
of the DevOps Pipeline, the so-called Deployment product intended for deployment.
Standard Process, is usually automated via Continuous
Integration (Cl). Deployment Standard Process, is The first three locations are mainly used for passing
usually automated via Continuous Deployment (CD). data between different people. The last one is mainly
All activities of the DevOps Pipeline are automated via used for passing data between Dev(elopment) and
specialized build and deployment tools and these Op(eration)s.
activities are automatically executed in a CI/CD system
after each change in the Version Control System. Questions
In particular, the Assembly Process should enable a © Why should in the Assembly Process Architecture
meaningful Round Trip, in that the process is up to four so-called Short-Circuit Transitions be
understood as a state machine and for all (forward) supported to shortcut from the Build Standard
activities there are meaningful associated backward Process to the Deployment Standard Process?
activities are existing. If a certain target state is
externally requested, all intermediate activities © What are the four types of external storage
between the source and the target state are implicitly locations supported by the Assembly Process
executed. Architecture?
For productivity or the most efficient “Developer Loop”
possible in software development, up to four Short
Circuit Transitions are supported, with which a
deliberate “Shortcut” from the Build Standard Process
to the Deployment Standard Process can be made.

W ARCHITECTURE
f FUNDAMENTALS

Environments &Quality Assurance TLTI i

DEV Development

Artifact
Repository
(Development)

Versjon Control
System

Deveicoment) (Potentially destructive)

Environment for the (separated

Artifact Flow

Artifact development of all artifacts of the
Repository system, typically located on each
(Operations) eveloper's respective system.

INT Integration

y v
DEl C3ED

SBX Sandbox

Potentially destructive)

nvironment for integrating all
artifacts of the system, usually
located centrally to the developers
and driven automatically.

TST Test

Destructive environment mirroring
the Test environment for
demonstration and
experimentation purposes,
including trainings and showcases.

Environment for testing the
system as a whole in a production-
resembling context.

STG | Staging

Environment for staging the
system as a whole in'a production-
equal context in order to deploy it
to the Production environment
subsequently.

DRY | Dry-Run — —-‘
Destructive environment mirroring | . <=
the Staging environment for

experimentation purposes,

including operating system and —

major dépendency upgrades.

Envirg
Mir

FOV | Failover

PRD Production

Destructive environment mirroring
the Production environment for
failover situation, including
disaster recovery situations.

Environment for running the
system as a whole in production.

X @

m Development Environments

Testing Approaches

Unit
ut Testing
Testing Tarief - Whitebox testin% the inner details
of individual units (components)
against their functional
specification.

Specialization: Regression Testing

Integration
T Testing

Whitebox testing the outer
interplay of individual units
(components) against the
technical design of the solution.
Specialization: Smoke Testing

System
ST Testing

Blackbox testing the system as a
whole against the functional and
non-functional requirements of
the solution.

Specialization: Load Testing

Operations Environments

(User) Acceptance

UAT Testing

Blackbox testing and formal
approval of the system as a whole
against the end-fo-en .
functionality and user experience

requirements.

Operation

s or Testing

Blackbox testing the system as a

whole against the availability and
proper operation of the intended
services.

alization: ice Monitori
Quality Promise, Specialization: Service Monitoring

Bugfix Effort

Replicated Environments 1 I

In practice, a distinction is usually made between 4
Development Environments, 4 Operations
Environments and 5 associated Testing Approaches.

The Development Environments are Development
(e.g., the computer of the developer), Integration (e.g.,
a central server with a Continuous Integration (Cl)
system), Test (e.g., a central server that resembles the
Production environment, but is not a copy of it) and
possibly Sandbox (e.g., a server that is a copy of Test for
training and show-cases).

The Operations Environments are Staging (a copy of
Production), Dry-Run (a 1:1 copy of Staging),
Production (the regular production environment) and
Failover (a 1:1 copy of Production).

Original Environments

The Testing Approaches are Unit Testing for the
functionality of components on the Development (and
possibly Integration) environment, Integration Testing
for the interaction of components on Integration (and
if applicable Development) environment, System
Testing for the functional and non-functional
properties of the overall system on Test (and Staging if
applicable) environment, (User) Acceptance Testing for
the “end-to-end” functionality of the overall system on
Staging (or Production if applicable) environment and
Operation Testing for the availability of the overall
system on the overall system on the Production
environment.

As transfer points for the artifacts between the 8
environments serve a Version Control System and an
Artifact Repository on the side of the Development
Environments and a corresponding Artifact
Repository on the side of the Operations
Environments.

evi Il

W ARCHITECTURE
7 FUNDAMENTALS

DevOps Toolchain

Development Environment Integration Environment Test Environment

Actor-Store Pattern

TECHNISCHE
UNIVERSITAT
MUNCHEN

Staging Environment Production Environment

DevOps Pipeline Pattern

Rule 1: Actors are linked either by Store-connected artifact flows or by plain triggers.
Rule 2: The configuration of all Actors and Stores has to be kept as small as possible by just

performing orchestration and retrieving the actual commands via external scripts.
Rule 3: On each Version Control (VC) commit, the application should be automatically
redeployed as an updated version on the Run-Times (RT).
Rule 4: Development and Operations can be split via two synchronised Artifact Repositories
(AR), because of network topology constraints, or act on a single common one.
Rule 5: Deployment on Staging can be triggered automatically or manually.
N

Stores

ED: Editor / IDE
Cl: Continuous Integration
BX: Build Execution

CD: Continuous Deployment
DX: Deployment Execution
IA: Infrastructure Automation

WC: Working Copy
VC: Version Control
DC: Distribution Copy
AR: Artifact Repository
RT: Run-Time

B

SC: Source Component
IC: Interm. Component
TC: Target Component
BS: Build Script

DS: Deployment Script
TS: Test Script

Development

To support a DevOps approach on the tool-side as well,
a DevOps Toolchain is advised to be used. At its core,
this is based on a pattern in which an Actor acts
between two Stores in each case by taking one or
more Artifacts as input from a Store, processes these
and writing one or more Artifacts as an output to
another Store. Additionally, Actors can be triggered by
Events or can be controlled directly by different groups
of people through interactions.

This basic pattern is now combined to a DevOps
Pipeline Pattern, where every “Commit” of a
Developer in a Version Control (VC) system triggers an
automatic compilation and integration process of an
application in a Continuous Integration (Cl) system.
The results of this process are stored in an Artifact
Repository (AR), which in turn triggers an automatic
installation process in a Continuous Deployment (CD)
system. The result is the installed application on a Run-
Time (RT) system, which can be accessed by Testers
and Users.

Logically, the systems VC and Cl belong to the area
Development, while the CD and RT systems belong to
the Operations area. The AR system, on the other hand,
is used by both areas as a common transfer point. Since
in practice, the DevOps Toolchain is not on a single
Environment, but is usually distributed on the logically
(or even physically) separated Environments
Development, Integration, Testing, Staging and
Production, some systems exist multiple times.

Operations

We distinguish the Artifacts between Source
Component (foo. java), Intermediate Component
(foo.jar)and Target Component (foo . exe) and,
on the other hand, between Build Script (foo . make),
Deployment Script (foo. spec) and Test Script (foo -
test.java).

Note intentional special cases: The Development
Environment is different because it allows a fast “edit-
build-install-start-stop” loop. The AR system can exist 1
or 2 times, depending on how strongly interweaved
Development and Operations are. Deployment in the
Production Environment should be manually
triggered via an Infrastructure Automation system.

Questions
@© Which two Actor systems control in the DevOps

Pipeline Pattern the automated integration and
installation process?

>
IS

" ARCHITECTURE TECHNISCHE

L ewens — SOftware Refinement Process TUTL

Develop. Tools Build Env. Package Spec.

8

P
Coding Building

Generalization

Software Engineer
Software Builder

Solution Engineer
”””

Persons/Roles

DevOps Engineer

Full-Service Provider

Independent Software Vendor (ISV)

3
g ,
,,,,,,,,,,,,,,,, S

Software Development is, in principle, a refinement The Value Creation Chain is supported by various
process in which from the Specification to the Service groups of people or roles and companies.
various steps are performed, which represents a kind of
Value Creation Chain. Questions
In each step of the Value Creation Chain, the previous @© Software Development can be understood as a
artifact is is “refined” with the help of added resources. Value Creation Chain. Which artifact is the
The first steps first generalize the very concrete maximum reusable?
Specification to the maximum reusable Software
Package. After that, the following steps specialize the
Software Package again up to the concrete Service.

vsi [Fd

W ARCHITECTURE
7 FUNDAMENTALS

Disraction fee ow delty lustration Realzationofall technica fundamental Vajor Verson ofsoluton, Usual)
of the solution and its base fea aspects of the solution, ensuring the major technical or domain-
Slapiying 13 pore structure anlcore ‘domain specific aspects can be realized #c e
functionality only. later on top of it without problems. e Minor Version and the Revision, t00.

PT_ oo

MVP Minimum-Viable

Product

ion of solution with just
to enable full turn

Software Release Management TUTI

Evolution Stage what? Version Number When? Release Phase (p) Wwhen?

TECHNISCHE
UNIVERSITAT
MUNCHEN

Points-In-Time (PiT) \hen?

v
[N]

Eary verson ofthe soluton with Mature version of solution with
mplete and unstable functionalities complete and stable functionalities to
(0 get feedback on pi lly Catch last minute e problems. Usually
tagged as "MNaR" (R > 0). tagged as"MNIcR" (R > 0) around RTM.

Eady version of th the solution with

DEV Development

manen
dunngg el ohment, 'ﬁ'.s e ault
§ag {0 the source code. Intended for no
availabilty releases.

SNP Snapshot

Distinct temporary point-in-time for a

ne
> Revision,

complete and mble functionalities, release of the current version without a

h Minor Version of the solution within the
Major Version. Usually

solmmn and il base features, show— of Buﬂd-Measure Learn loop with A Bt

rt and time. too.

PoC Proofof Concept] FP Full Product

Pure realization of most-risky aspects of Final version of the solution with all

ihe solution, roofing therr o ibiies. inténded functionality and targeting
ight still be'based on a differes the mainstream market:

ooy tham s MU and PP

R

Revision

The Revision of the Release Phase

within Major and Minor Version.

Bumped for every A/B/C/R Release
ase.

| arbitrary technolos | target technology |

Standard
Edition

c E Community
Edition
Edition of the solution for the Oper
Source Commanity. Contains okt the
base functionality and has limited
volunteering support
Enterprise

EE Edition

Edition of the solution for the Enterpnse
market. Contains the base
additional funcuonalny and has full
commercial suj

STD

Edition of the solution with just the
standard funcionality an egular

Suppor
Professional

PRO Edition

Edmon af the snlutlon with both the
ra functionalities and
B suppurl

No public availability of solution at all.
‘The scope for all Development and
sometimes Snapshot point-in-times.

Limited
Availability
lelted &ubll(avallablllt{ of solution.

- End-of-
e nnouncemenl (EOL
T T e

oo M [N p[R]L D]

STABLE = == == = > >

o Examples:

= 5 T 1.2a3.20230101+F42A-XA

1.2b3-EA

BLEED g 1.2.3-GA
1243

1day 4 weeks 3 months

In Software Release Management, Releases of
software products are controlled by 7 dimensions,
which identify the release via a well-defined Version
Schema.

The dimension Evolution Stages is about the type and
development stage of the product. A distinction is
made between the (partly not yet based on the later
technology) pre-stages Wireframe, Prototype and
Proof of Concept and the production-ready stages
(which are based on the target technology) Walking
Skeleton, Minimum-Viable Product and Full Product.

In the Version Number dimension, the product is
identified by three numbers: Major Version, Minor
Version, and Revision. The first two refer to the content
of the product. The latter refers to the respective
Maturity Level of the product. The Maturity Levels
dimension itself defines the maturity of the product
within the Major/Minor Version: Alpha (a, incomplete,
unstable), Beta (b, complete, unstable), Release
Candidate (rc, complete, stable), Release and Release
Update.

The dimension Points-In-Time tells you whether the
current release has the status Development (as the
product is in the VCS), whether it is a special Snapshot
(e.g., for extremely time-critical hotfixes or early
feedbacks) or if it is a normal Release.

Product Edition Which? Availability Scope (S) who? Distribution Channel Wwhere?

Early public avalablity of solution for
early market. Usuall

Candidate levels or
initial Release Update levels.

Late publlc avallablhﬁ of solutior

Iand Isomellmes just for Release Update
level

Distribution Channel Artifacts Versioning Scheme (stdver.org) Product Life-Cycle :
20196

e pmdm
Usually gaed os M NBR RS).

version increase. Intended for limited
availability releases.

REL ' Release

Distinct temporary point-in-time for a
release of the curtent version with 2
Version increase: Intended for early and
e SR e

avail blefoMpmd ion use. Usually
tagged as MNR" (R >= 0).

Early
Avallability

Bleed

BLEED Channel

Distribution channel for all daily

Stable

STABLE Channel

Distribution channel for all quarterly
releases ("YYYY.ON") with experimental
features turned off Intended for fast
Mmainstream market and production use.

/Fbe heta or Release
i Release and
Intended for testing purposes only.
General EDGE
Availability

Solid
Channel
Distribution channel for all (half-)year
releases (YYYYUNY) with experimental
features turned off. Intended for !
mainstream market and pmducnon use.

Edge
Channel

SOLID

Distribution channel for all monthly

n for
Jsually for Release releases (" MM") with experimental

s
features turned on. Intended for arly
market or testing purposes.

End-of-Life Last-Order-
Announcement
(LOD)

Release to
Manufactoring

End-of-
i
(EOL) t

I@-- -_ T 1

The dimension Product Editions defines the edition or
variant of the product: usually Community/Enterprise
Edition (with focus on the target market) or Standard/
Professional Edition (with the focus on the range of
functions).

The dimension Availability Scopes defines for whom
the release of the product is available: No Availability
(only for the manufacturer internally), Limited
Availability (for special situations), Early Availability
(for early adopters among customers) and General
Availability (for all customers). Usually, the Availability
Scopes are used for specific Maturity Levels, but there
is N0 necessary connection.

The dimension Distribution Channels defines over
which channels the release is available: Bleed Channel
(for “Visionaries” and “Die Hards"), Edge Channel (for
“Early Adopters”), Stable Channel and and Solid
Channel (for all customers). In any case, the
Distribution Channels should be directly linked to the
branches of the VCS.

Questions

© At which Maturity Level in Software Release
Management does one have an incomplete and
unstable functionality?

© At what Maturity Level in Software Release

Management does one have complete but usually

still unstable functionality?

	Questions
	Questions
	Questions
	Questions
	Questions

