TECHNISCHE
TUTT voveesrs
MUNCHEN

Software Engineering in der industriellen Praxis (SEIP)

Dr. Ralf S. Engelschall

W ARCHITECTURE ° TECHNISCHE
/i FUNDAMENTALS I I n ea r UNIVERSITAT
|] MUNCHEN

Problem or Solution or

oL F1

Question 5 Answer

INVESTIGATE & RESEARCH

1. Reflecting

(find facts via own knowledge/experience)

2. Searching
(find facts via body of knowledge)

3. Verification
(cross-check facts according to sources)

4.Tagging

(classify facts with tags)

STRUCTURE & SORT

1. Typing

(split/aggregate facts according to type)

2. Clustering

(hierarchically group facts by tags)

3. Relating

(link source to target facts)

4. Ordering

(order facts in each cluster)

REDUCE & COMPLEMENT

1. Substituting

(substitute/rename facts)

2. Extending

(add still missing facts)

3. Priorization

(priorize facts according to criterias)

4. Rejecting

(reject non-relevant/redundant facts)

INTEGRATE & PRESENT

1. Specialization

(specialize too general facts)

2. Generalization

(generalise too specific facts)

3. Integration
(aggregate/link facts)

4, Presentation

(convert facts into target form)

p;
I KLdo) "(60-90-6107) 1’0’ L UOISIaA :uonensnj| [ea1ydess

Lga 01 pasuadI P3NUAIYOId UoRINPOIdaY Pazioyineun
1L
ZUMOXNGNT YR JO HIOM UO paseq [eyas|abu °S Jley Ud AQ 010z PRIOYINY (60-00-6107) L'0"L UOISIA :US1UOY) [eN1D3|[21U]

U3'SJIeY 10 6107 0 Y

(IWNLL) USYPUNIN 1RUSISAIUN SUISIU
My>j[eyasieb

&

b1y || ‘<WO|eysabus,/

*AJUO S1X21U02 31N1D3| 82UIIS JAINAWIOD) Ul UoNONPOIda) I
paniasay siy

W ARCHITECTURE
7 FUNDAMENTALS

Research

Crawling the problem
domain's body of knowledge
to find starting points.

Brainstorming

Suggesting larger number
of solution ideas for further

combination and development.

Analogy

Thinking in terms of similar
problems for which solutions
are known to get inspired.

Reduction

Transform the problem
into another one for which
a solutions already exists to
reduce solving efforts.

Abstraction

Solving the problem in a
model of the problem before
applying it to the real problem
to get a better understanding.

Generalization

Thinking about the problem
more abstract to get rid of
special cases.

Specialization

Solving a special case first
to get an impression towards
the full solution.

Variation

Changing the problem context
or expressing the problem
differently to find a not
obvious solving lever.

Problem Solving Heuristics

Lateral Thinking

Approaching the problem
indirectly and creatively
to find a not obvious
solving lever.

Hypothesis Proof

Assuming a possible solution
and trying to prove (or
disprove) the assumption to
find starting points.

Root Cause

Asking "Why?" five times in
sequence to explore the
cause-and-effect relationships
underlying the problem.

Means End

Choosing an action from
scratch just at each step to
move closer and closer to
the solution.

TUT

Backward Search

Looking at the expected
results and determine which
operations could bring

you to them.

Backtracking

Remembering path towards
the solution and on failure
tracking back and choosing
a new path.

Divide & Conquer

Breaking down the large
complex problem into
smaller, easier solvable
partial problems.

Trial & Error

As a last resort, brute-force
testing all potential solutions
in case of a small enough
total solution space.

TECHNISCHE
UNIVERSITAT
MUNCHEN

—_
on
N

Definition: Heuristic — fallible experience-based technique or strategy for problem solving in
case Rule of Thumb Guessing, Intuitive Judgement, Common Sense and Stereotyping
are either not sufficient or not appropriate.

W ARCHITECTURE
7 FUNDAMENTALS

Gartner Hype-Cycle

for Emerging Technologies

100%

75%

50%

25%

0%

Product Phases

1
Innovation Peak of Trough of Slope Plateau of
Trigger Inflated Disillusion- of Enlightenment Productivity .
Expectations ment Time
100%
Gartner
Hype-Cycle
for Emerging
Technologies
75%
wv
S
= Inflection
g Points v
— — 50%
] (]
£ 5
g =
=
O
25%
. Moore
Technology
Adoption
. Life-Cycle
0 o%
2.5% 13.5% ' 34% 34% 16%
Innovators Early . Early Late Laggards
Adopters Majority Majority
I]
I 1
Early Market The Mainstream Market

(“Visionaries”) Chasm

(“Pragmatists”)

Moore Technology

Adoption Life-Cycle

Technology Life-Cycles

Gartner Hype-Cycle

for Emerging Technologies

According to [1], provides “a graphic
representation of the maturity and adoption of
technologies and applications, and how they
are potentially relevant to solving real business
problems and exploiting new opportunities.” It
gives “a view of how a technology or
application will evolve over time!” The five
product phases are:

“Innovation Trigger: A potential technology
breakthrough kicks things off. Early proof-of-
concept stories and media interest trigger
significant publicity. Often no usable products
exist and commercial viability is unproven.

Peak of Inflated Expectations: Early publicity
produces a number of success stories — often
accompanied by scores of failures. Some
companies take action; many do not. The peek
can be also considered a direct result of the
Dunning-Kruger Effect, a “cognitive bias in which
people mistakenly assess their cognitive ability
as greater than it is” [2] and hence exaggerate
in their expectations.

Trough of Disillusionment: Interest wanes as
experiments and implementations fail to
deliver. Producers of the technology shake out
or fail. Investments continue only if the
surviving providers improve their products to
the satisfaction of early adopters.

Slope of Enlightenment: More instances of
how the technology can benefit the enterprise
start to crystallize and become more widely
understood. Second- and third-generation
products appear from technology providers.
More enterprises fund pilots; conservative
companies remain cautious.

Plateau of Productivity: Mainstream adoption
starts to take off. Criteria for assessing provider
viability are more clearly defined. The
technology's broad market applicability and
relevance are clearly paying off."

TECHNISCHE
UNIVERSITAT
MUNCHEN

Moore Technology

Adoption Life-Cycle

According to [3], describes “the adoption
or acceptance of a new product or
innovation, according to the
demographic and psychological
characteristics of defined adopter
groups.” The five distinct adopter groups
are:

“Innovators: had larger” business, “were
more educated, more prosperous and
more risk-oriented.

Early Adopters: younger, more
educated, tended to be community
leaders, less prosperous.

Early Majority: more conservative but
open to new ideas, active in community
and influence to neighbours.

Late Majority: older, less educated, fairly
conservative and less socially active.

Laggards: very conservative, had small”
business “and capital, oldest and least
educated.”

According to [4], there is also a “chasm
between the early adopters of the
product (the technology enthusiasts and
visionaries) and the early majority (the
pragmatists),” because “visionaries and
pragmatists have very different
expectations.”and technology is usually
switched, at last at the Inflection Points.

Crossing The Chasm [4] is related to the
Innovator’s Dilemma [5], where “new
entry next generation products” usually
“find niches away from the incumbent
customer set to build the new product.”

[1] https://gtnr.it/36rBT4X
[2] https://bit.ly/2qZ4Lkx

[3] https://bit.ly/2N3fB1t
[4] https://bit.ly/2NuRNT7
[5] https://bit.ly/34IMKEW

'A|UO $1X21U0D 2UN1D3| 3DU3IDS JAIndwo)

panIasay syBIY Iy '<wod{jeyds|

ARCHITECTURE TECHNISCHE
[o Open Source Software TUT 2
=

Distribution terms (license) of Open Source Software

must be compliant with the following criterias: . Dogmatism
- Free Redistribution § SOftware Sha"ng ggﬁ{?clquty cos

- (Original) Source Code (Availability)
- Derived Works (Allowance)

- Integrity of the Author's Source Code @ . Fundamentalism
- No Discrimination Against Persons or Groups SOftware HaCklng ﬁ;tckin

- No Discrimination Against Fields of Endeavor 9

- Distribution of (Non-Exclusive) License)

- License Must Not Be Specific to a Product Pragmatism

T e e e € SoftwareEngineering busnes

- License Must Be Technology-Neutral Hig =2y

Most Popular Open Source Licenses

Non-Copyleft (strong) i (strong)

BSD[2C] BSD[3C] BSD[4C] CDDL1 0 . K LGPL30 AGPL30
Choosing an Open Source License License Compliance Checking Meta-Model

S: Strong Copyleft (e.g. GPL) is specified with ___
software W:Weak Copyleft (e.g. MPL, LGPL) ——
type N: Non- Copyleft (e.g. MIT, Apache) has s
V' N . . Number
| A A as
(i
, ! S i 3
| 1 UseType is defined for is defined for &
Too I | i "g range of range of ogically i
i H |’\(‘1 .2 elongs t <
I lame c 4 s s
I———— | i R . Description S License o License License L} Component Component Product
| Group Declaration Class u
| ey Penal B g ° | Name 3 | Name g = | Name
Framework . Condition [T 7] Penaly 2 | Name g § | prolog Contact
I d 2 2 o g | Epilog ‘S
| Name £ = 4 1 physically
—————————————————————— - e - P v contains
1 Description
: |
. | Li Li Li C Prod
Librar : ; @ oo @ woscimg @ g @ iR ©® Modaling
y : ;
i ; L0 riginality pespredeined g DEFCON | o reccicuied
i P &size Level
1 1 . 1
low | med | high e
1 1

/< == Back of the Envelope Calculation TUTI -

Customer: Twitter Inc.

Business: MicroBloggin ok? R
c Sov" Vg 2007 { Technology-Given |
q \ q . . i lechnology-Given
Use-Cases 1/3 (profile): { are We k2 Business-Given Technology-Given : 9y !
- user can register an account wha e mmm——————y . ; ! Key Figure :
- user can "follow" other users e Key Figure Key Figure i Gatalogue i
- user can create lists of users he follows 27 ! J :
\ U
/, \ _____________ s T .
Use Cases 2/3 (send): / \ s
- user can send tweets / Sl e’
- tweets are based on words, each either l, ==
a text "example’, tag "#example", user reference Resultin <
"@example" or URL http://example.com [ArchitecturegCrux Resulting Intermediate
_ N . , . .
tweets are either public broadcast or h . Calculated Figure Calculated Figure
personal/direct messages ' Figures
- user can re-tweet a message of others i
|
Use Cases 3/3 (query): |
- user can view timeline :
(chronological tweets of others he follows) .
- user can search for tweets | .
(by keyword "foo", tag "#foo", or user "@foo") | Calculation (Example)
- user can view tag cloud :
Frontends/Clients: : tweets;second peak chars/t}/veet 350% ove;head HTTP+TCP+IP+Ethernet :
_ i i f Clo[sNo[o[osN0[o[o} tweets/day (write) 4.630 tweets/second (write) 2,2 MB/s (write) nE
mobile app (IOS.' AndrOId) : 2.592.000.000 queries/day (read) queries/second (read) 140,2 MB/s (read) é%
- destl)(top app (WIndOWS, Mac OS X) ' 6,5 factor read/writes 10 tweets/query MB/S %;
- Web app P
- embedded web Widget : mtweets/day/user 10000 Mbps 1250 MB/s %%
(query use cases only) ! s s
ST e ! 621.880.000 tweets/day (average) total 10 Mbps 1,25 MB/s 53
| Current Demand (as of 201 2): i ! 64,3% users are active at all %
: - 140M user pr0ﬁ|e5 : " 277.778 users/minute active g
: : E
i -400M tweets/day : /
| -6393 tweets/second peak ' /
|- 140 characters/tweet H ,’ user profiles £[0o) GB/hour data in total 2000 requests/sec (read) AS performance
i -30K queries/second = 52.000 chars/users for profile pAZY TB/month data in total 100 requests/sec (write) As performance
. ' I T8 profil I 15,0 for wri
i -300 GB/hour data In tOtal : profile {teral) 200% overhead storage z:::: fz: \rz;lziess
| -4/4tweets/day/user on average | TR ollower/user 1265,9 KB/ tweets
: - 103,4 foIIower/user : 14.474.600.000 user follow links 104,3 GB/day tweets
| -<5stweet-write-to-read-delay — o) | e
\ ’ g
SoTssossssssssssssssosssssssss e e 200 chars/log entry
Future Demand: Storage Hardware Requirements 6763,6 KB/s log
- quadratic user and traffic growth EBUSNGE daylog

0,3 TB/disk (15K rpm) T 8/month log
8,0 disks/server

2,4 TB/server ratio business data
server/month (new) 90,8% ratio infrastructure data

Y ARCHITECTURE s . ot TECHNISCHE
v wewens \Weighted Decision Matrix TUTI 2

. Software Selection:
Ci=1 .m- Criteria i Suitable Functionality
. Available Usage Examples

Aj=1 .n Alternative j Reasonable Documentation

I Reasonable Support
Wi min[1/4,1/2,1,2,4]:Weighting i Permissive License
Long-Term Release Track Record
Current Market Momentum

E; j in{-2,-1,0, +1, +2 }: Evaluation i,j

=SUMi_q mw;* Ei,j): Rating j

Ri_g .
J=1.n Software Selection (Open Source):

R = MAX;_ R.): Best Ratin + Clean Source Code
best =1 n J) 9 + Clean Build Process

+ Open Source License

Software Selection (Library):

+ Non-Invasive Programming Model

+ Orthogonal Application Programming Interface
Light-Weight Alternative: + Minimum/No Dependencies

il el s + Non-Copyleft Open Source License
positive/negative backing criterias

Best Practice Rules Software Selection (Framework):

+ Orthogonal Application Programming Interface
+ Adequate Dependencies
+ Non-Overlapping Scope

the best rating should be a least + Non-Copyleft Open Source License
10% above the second best rating.

the alternatives have to be
really reasonably comparable.

the best rating should cover at least Software Selection (Tool):
80% of the requirements. + Clean Deployment Procedure

Notice + Pleasant Command-Line Interface

the Weighted Decision Matrices should

7 N o cover at least all grand decisions.
It's about subjective decision transparency, Software Selection (Application):

not about objective decision making! + Clean Deployment Procedure

+ Pleasant Graphical User Interface
Weight Criterias
(simply or AHP)

Software Architecture Evaluation:

Meets Functional Requirements

Meets Non-Functional Requirements

Adequate Technology Overhead

Single Dependency Direction

Distance to State of the Art (“modern”)

Distance to Most Simple Approach (“adequate”)
Distance to Mainstream Approach (“mainstream”)
Documented Architecture Decisions (“rationales”)
Documented Architecture Views

Documented Architecture Perspectives (NFR)

Organize
Criterias
Hierarchically

Determine Evaluate
Alternatives Alternatives e

Ranking against Criterias

200
Zoo
=3
S5%
SR
Fmm
55
@

) ud
b

PanIasay sybiy ||y ‘<wodleydsjsbusy//dnl

'AJUO S1X31U0D 21N123] 9IUIDDS JINdWO?) Ul UoidINpoIds.

" ARCHITECTURE F A o TECHNISCHE

P runoaneimas ocus Area Matur ode TUT] viveesrs

u u u I MUNCHEN
Matrix Structure Focus Area Definition

ey Id: <unique id of focus area>
Name: <unique name of focus area>
2 3 Gm-1 Gm Maturity Level Definition

Id Area
1 1 Id: <unique id of focus area>
Level: <unique letter of maturity level>
|d2 Area2 Name: <unique name of capability>
Goal: <purpose the capability serves>
Action: <steps how to meet the capability>

Prerequisites: <optional references to Id/Level>
References: <optional external references>

0 1
A
A
A

Id,, Area,
Maturity Level Prerequisites
Notice: Maturity Levels are inherently
ordered within their Focus Area, but
Focus Maturi Maturi i
N é"r:égy & \;‘efl'zy optionally also form a dependency graph

by cross-referencing Maturity Levels of
other Focus Areas.

RIS
52
S8
23
a
a5
e
Sn
28
a3
oV
3=

paniasay

Maturity Grade Zero

'AJUO S]X33U0D 31N123] 3D

Determine Notice: the Maturity Scale always starts

maximum

Define Organize Maturity Level %;elmrr}]e with 0, because an organization m!ght not
Focus Areas Focus Areas of organization Maturity Grade of be able to fulfil a Focus Area at all,i.e.,

Hierarchically

Map Maturity Define Maturity
Levels onto Levels for each
Maturity Scale Focus Area

Organization it might to not even be on Maturity Level A.

)
N -l for each Focus Area
Maturity Grade Determination

Determine minimum Maturity Level

fulfilled by an organization and project
from Maturity Level onto Maturity Scale.

ARCHITECTURE
FUNDAMENTALS

/[

Vote is a portable mobile-first designed
application for easily performing
anonymous online votings within a
small group of people to figure out their
opinions or moods.

Votings are created in advance,
executed at a certain time, conducted
by the users, and then finally reported.

Actor Role Use-Case

User Register Account
Recover Account
Configure Account
Login Account
Logout Account

Author Create Voting
Grant Voting Access

Supervisor Execute Voting
Enable Question
Display Result

Voter Vote Question
Display Result

Quality Expectation
Cross-Platform Client yes
Non-Cleartext Password Storage yes
Minimum Concurrent Voters (people) 50
Maximum Display Result Latency (sec) 1
Aspect Amount Size TotalSize Unit

Account Data 10000 256 2.560.000 B
Voting Data 10.000 1.024 10.240.000 B
Server RAM Usage 200 20 4.000 MB

Big Picture o

0 Elevator Pitch (RE(D)
Name, Purpose, Motivation, @
Actors, Devices. Qg
Rationale: Roughly describe the

purpose and primary motivation.

Format: Prose Abstract

e Customer Journey @@

A

Rationale: Sketch the customer
journey through major use-cases.

Actor Roles,
Use-Cases.

Format: 2xN Table or UML UC Diag.

o Quality Requirements (3@

®

Rationale: List requirements on
the major non-functional qualities.

Qualities,
Expectations.

Format: 2xN Table

e Sizing Sketch (SW[T)

Aspects, Amounts,

Sizes, Total Sizes, Units. ‘[(@»l

Rationale: Sketch the sizing of
major entities and system parts.

Format: 5xN Table

e Crux Flash (RE[D)
Functionality, \'®’_

Cruxes.
Rationale: Roughly describe the
functionality and the cruxes.

Format: Prose Abstract

o Dialog Storyboard ~ @'®

Dialogs, Interaction, ,-.E
J

Control Flow. K@

Rationale: Illustrate the major user
interface dialogs (or dialog types).

Format: Wireframe Graph Diagram

e System Architecture &)@

Actors, Systems,) | 8
L)~
Zones, Programs. N

Rationale: Illustrate the major
system architecture components.

Format: Boxes'n'Lines Diagram

o Data Model (W[T)
A

Entities, (A |
Relationships.

Rationale: Model major data
entities and their relationships.

Format: UML Class Diagram

TECHNISCHE
m UNIVERSITAT
MUNCHEN

Votings can be quickly accessed by QR-
code or URL and are based on one or
more questions and corresponding
multiple-choice-based answers.

Votings are interactively conducted,
and answers are received and reported
either asynchronously in batches
(offline voting) or even synchronously in
real-time (online voting).

[Vote] [Vote] [Vote]
{(Ui/client) (Ui/client) {(Ui/client)
\

Reverse
proxy

[Vote [Vote] [Vote]
(SV/master) 3 (SV/worker) (SV/worker)

Fostoresat

)| Device

-_—
.\‘
p—

ol

9]
8
2
!
5
A
19
3
=3
3
s
al
&
3
2
3
@
a
g
3
A
3
S
3
9

jeydsjabusy/d

PanIasay SIYBIY Y '<wo:

TECHNISCHE
UNIVERSITAT
MUNCHEN

7 ARCHITECTURE
7 FUNDAMENTALS

iewpoints & Perspectives

5 6

Deployment
Required technical environment and
mapping of software elements to

runtime environment that will
execute them.

Context

Relationships, dependencies, and
interactions between the system and
its run-time environment (people,
systems, external entities).

Functionality

System's functional elements, their
responsibilities, interfaces, and
primary interactions (control flow).

Development

Aspects of the software development
process for versioning, building,
testing, maintaining, and enhancing
the system.

Information 3

Static data structures and information

Operation
Aspects to operate, administer,

S e
e
/1?

Development Process Viewpoints

Evolution & Change

Ability of the system to be flexible in
the face of the inevitable change that
all systems experience over time.

Regulation & Compliance

Ability of the system to conform to
local and international laws, quasi-
legal regulations, company policies,
and other rules and standards.

flows to store, manipulate, manage,

and distribute information.

Concurrency -

Concurrency structure of the system
and mapping of functional elements
to concurrency units (processes,
threads, transaction scopes).

Application Architecture Viewpoints

Interationalization & Localization

Ability of the system to be
independent from and adaptable to
any particular language, country, or
cultural group.

Usability & Accessibility

Ability of the system to allow people
to effectively interact with the system
and also to be even used by people
with disabilities.

Application Overview Viewpoints

Performance & Scalability

Ability of the system to predictably
execute within its mandated
performance profile and to handle
increased processing volumes.

Availability & Resilience

Ability of the system to be fully or
partly operational when required and
to effectively handle failures.

Cross-Cutting Perspectives

update, upgrade and support the
system when running in its
production environment.

Operation Process Viewpoints

Constraints & Resources

Ability of the system to be designed,
built, deployed, and operated within
known constraints around people,
budget, time, and materials.

Security & Recoverability

Ability of the system to reliably
control and audit who can perform
what actions on what resources and
to detect and recover from failures.

P-€€81/-17E-0-8£6 NES| 'L LOZ 'P3 pu

	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1

