
Software Engineering in der industriellen Praxis (SEIP)

Thank you for �ying Industry Airlines.
Lecture End

To be continued.
Lecture Gap

Let’s have a meal!
LUNCH

Let’s breathe deeply!
BREAK

Fasten your seatbelts, please.
Lecture Start

Dr. Ralf S. Engelschall

INVESTIGATE & RESEARCH STRUCTURE & SORT REDUCE & COMPLEMENT INTEGRATE & PRESENT

1 52 43

Problem or
Question

Solution or
Answer

Facts Hypothesis Theory

4. Tagging
(classify facts with tags)

1. Typing
(split/aggregate facts according to type)

2. Clustering
(hierarchically group facts by tags)

3. Relating
(link source to target facts)

4. Ordering
(order facts in each cluster)

1. Re!ecting
("nd facts via own knowledge/experience)

3. Veri"cation
(cross-check facts according to sources)

2. Searching
("nd facts via body of knowledge)

3. Priorization
(priorize facts according to criterias)

4. Rejecting
(reject non-relevant/redundant facts)

1. Substituting
(substitute/rename facts)

2. Extending
(add still missing facts)

3. Integration
(aggregate/link facts)

4. Presentation
(convert facts into target form)

1. Specialization
(specialize too general facts)

2. Generalization
(generalise too speci"c facts)

diverge converge

creative, subjective, courageousanalytical, objective, open

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.1 (2019-06-09), Authored 2010 by D
r. Ralf S. Engelschall, based on w

ork of M
ark Lubkow

itz.
G

raphical Illustration: Version 1.0.1 (2019-06-09), Copyright ©
 2019 D

r. Ralf S. Engelschall <http://engelschall.com
>, All Rights Reserved.

U
nauthorized Reproduction Prohibited.

A
F

16.1

Think Clearly

Research

Crawling the problem
domain's body of knowledge
to �nd starting points.

Brainstorming

Suggesting larger number
of solution ideas for further
combination and development.

ANAnalogy

Thinking in terms of similar
problems for which solutions
are known to get inspired.

RDReduction

Transform the problem
into another one for which
a solutions already exists to
reduce solving e�orts.

GEGeneralization

Thinking about the problem
more abstract to get rid of
special cases.

SPSpecialization

Solving a special case �rst
to get an impression towards
the full solution.

VAVariation

Changing the problem context
or expressing the problem
di�erently to �nd a not
obvious solving lever.

ABAbstraction

Solving the problem in a
model of the problem before
applying it to the real problem
to get a better understanding.

HPHypothesis Proof

Assuming a possible solution
and trying to prove (or
disprove) the assumption to
�nd starting points.

RCRoot Cause

Asking "Why?" �ve times in
sequence to explore the
cause-and-e�ect relationships
underlying the problem.

MEMeans End

Choosing an action from
scratch just at each step to
move closer and closer to
the solution.

LTLateral Thinking

Approaching the problem
indirectly and creatively
to �nd a not obvious
solving lever.

BTBacktracking

Remembering path towards
the solution and on failure
tracking back and choosing
a new path.

DCDivide & Conquer

Breaking down the large
complex problem into
smaller, easier solvable
partial problems.

TETrial & Error

As a last resort, brute-force
testing all potential solutions
in case of a small enough
total solution space.

BSBackward Search

Looking at the expected
results and determine which
operations could bring
you to them.

De�nition: Heuristic — fallible experience-based technique or strategy for problem solving in
 case Rule of Thumb Guessing, Intuitive Judgement, Common Sense and Stereotyping
 are either not su�cient or not appropriate.

BR

RE

Licensed to Augsburg U
niversity for reproduction in Com

puter Science lecture contexts only..
Licensed to Technische U

niversität M
ünchen (TU

M
) for reproduction in Com

puter Science lecture contexts only.
Licensed to m

sg system
s ag for reproduction in m

sg Applied Technology Research training contexts only.

Ra
lf S

. Engelschall Signature Series Orig
in

al

Intellectual Content: Version 1.0.3 (2019-10-31), Authored 2013-2019 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.4 (2021-07-21), Copyright ©

 2013-2021 D
r. Ralf S. Engelschall <

http://engelschall.com
>

, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
16.2

A
F

Problem Solving Heuristics
2

1

3 4 5

The
Chasm

2.5% 13.5% 34% 34% 16%
Innovators Early

Adopters
Early

Majority
Late

Majority
Laggards

M
ar

ke
t

 S
ha

re

0%

50%

100%

25%

75%

Cu
st

om
er

Ex

pe
ct

at
io

ns

0%

50%

100%

25%

75%

Innovation
Trigger

Peak of
In!ated

Expectations

Trough of
Disillusion-

ment

Slope
of Enlightenment

Plateau of
Productivity

Time

Moore
Technology

Adoption
Life-Cycle

Gartner
Hype-Cycle

for Emerging
Technologies

Early Market
(“Visionaries”)

Mainstream Market
(“Pragmatists”)

Product Phases
According to [1], provides “a graphic
representation of the maturity and adoption of
technologies and applications, and how they
are potentially relevant to solving real business
problems and exploiting new opportunities.” It
gives “a view of how a technology or
application will evolve over time.” The "ve
product phases are:

“Innovation Trigger: A potential technology
breakthrough kicks things o#. Early proof-of-
concept stories and media interest trigger
signi"cant publicity. Often no usable products
exist and commercial viability is unproven.

Peak of In!ated Expectations: Early publicity
produces a number of success stories — often
accompanied by scores of failures. Some
companies take action; many do not. The peek
can be also considered a direct result of the
Dunning-Kruger E!ect, a “cognitive bias in which
people mistakenly assess their cognitive ability
as greater than it is” [2] and hence exaggerate
in their expectations.

Trough of Disillusionment: Interest wanes as
experiments and implementations fail to
deliver. Producers of the technology shake out
or fail. Investments continue only if the
surviving providers improve their products to
the satisfaction of early adopters.

Slope of Enlightenment: More instances of
how the technology can bene"t the enterprise
start to crystallize and become more widely
understood. Second- and third-generation
products appear from technology providers.
More enterprises fund pilots; conservative
companies remain cautious.

Plateau of Productivity: Mainstream adoption
starts to take o#. Criteria for assessing provider
viability are more clearly de"ned. The
technology's broad market applicability and
relevance are clearly paying o#.”

[1] https://gtnr.it/36rBT4X
[2] https://bit.ly/2qZ4Lkx
[3] https://bit.ly/2N3fB1t
[4] https://bit.ly/2NuRNT7
[5] https://bit.ly/34lMkEW

Gartner Hype-Cycle
for Emerging Technologies

According to [3], describes “the adoption
or acceptance of a new product or
innovation, according to the
demographic and psychological
characteristics of de"ned adopter
groups.” The "ve distinct adopter groups
are:

“Innovators: had larger” business, “were
more educated, more prosperous and
more risk-oriented.

Early Adopters: younger, more
educated, tended to be community
leaders, less prosperous.

Early Majority: more conservative but
open to new ideas, active in community
and in!uence to neighbours.

Late Majority: older, less educated, fairly
conservative and less socially active.

Laggards: very conservative, had small”
business “and capital, oldest and least
educated.”

According to [4], there is also a “chasm
between the early adopters of the
product (the technology enthusiasts and
visionaries) and the early majority (the
pragmatists),” because “visionaries and
pragmatists have very di#erent
expectations.” and technology is usually
switched, at last at the In!ection Points.

Crossing The Chasm [4] is related to the
Innovator’s Dilemma [5], where “new
entry next generation products” usually
“"nd niches away from the incumbent
customer set to build the new product.”

Moore Technology
Adoption Life-Cycle

In!ection
Points

Gartner Hype-Cycle
for Emerging Technologies

Moore Technology
Adoption Life-Cycle

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.3 (2020-05-16), Authored 2018-2020 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.5 (2019-10-31), Copyright ©

 2018-2019 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
16.3

Technology Life-Cycles

Distribution terms (license) of Open Source Software
must be compliant with the following criterias:
 - Free Redistribution
 - (Original) Source Code (Availability)
 - Derived Works (Allowance)
 - Integrity of the Author's Source Code
 - No Discrimination Against Persons or Groups
 - No Discrimination Against Fields of Endeavor
 - Distribution of (Non-Exclusive) License
 - License Must Not Be Speci�c to a Product
 - License Must Not Restrict Other Software
 - License Must Be Technology-Neutral

(N)

N N

W

W

WW

W

W

W

(S) S S

(S)

(S)

(N)

(N)

Tool

Framework

Library

low med high

originality
& size

software
type

S: Strong Copyleft (e.g. GPL)
W: Weak Copyleft (e.g. MPL, LGPL)
N: Non- Copyleft (e.g. MIT, Apache)

Id
Name
Description
Group

UseType

Id
Name
Description

Condition Penalty

License
Declaration

Id
Name

License
Class

Id
Name

License

Component
Usage

Id
Name
Contact

Product

Id
Name
Prolog
Epilog

Component

Number

Version

Level

DEFCON

+

+++

22

License
Abstraction

License
Modelling

Component
Mapping

License
Mapping

Product
Modelling

has pre-de ned has calculated

is speci ed with

has

has

is de ned for
range of

is de ned for
range of

has

co
ns

is
ts

 o
f

co
ns

is
ts

 o
f

is
 m

od
el

ed
 v

ia

is
 re

du
ce

d
to

st
ay

s
un

de
r

re
fe

re
nc

es ha
s

fully reusable,
fully context independent,

instantiated in-advance

partly reusable,
fully context independent,

instantiated in-advance or on-demand

not reusable,
context speci c,

instantiated on-demand

1 2 3 4 5

logically
belongs to

physically
contains

License Compliance Checking Meta-Model

Open Source Personality Streams

Most Popular Open Source Licenses

Choosing an Open Source License

Open Source De�nition

§
@

€

Software Sharing

Software Hacking

Software Engineering

Dogmatism
Social Equity
Politics

Fundamentalism
Art
Hacking

Pragmatism
Business
Engineering

Sc
ie

nc
e

Pr
iv

at
e

In
du

st
ry

CC01.0 AGPL3.0GPL3.0LGPL3.0MPL2.0 EPL1.0MIT Apache2.0BSD [4C]BSD [3C]

(strong)

CDDL1.0BSD [2C]

(weak)(weak) (strong) Copyleft

CC-BY-SA4.0

Non-Copyleft

Licensed to Augsburg U
niversity for reproduction in Com

puter Science lecture contexts only..
Licensed to Technische U

niversität M
ünchen (TU

M
) for reproduction in Com

puter Science lecture contexts only.
Licensed to m

sg system
s ag for reproduction in m

sg Applied Technology Research training contexts only.
Licensed to SEA Softw

are Engineering Academ
y gG

m
bH

 for reproduction in education contexts only.

Academy
Engineering
SoftwareRa

lf S
. Engelschall Signature Series Orig

in
al

Intellectual Content: Version 1.0.2 (2023-04-22), Authored 2007-2023 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.2 (2022-10-09), Copyright ©

 2014-2022 D
r. Ralf S. Engelschall <

http://engelschall.com
>

, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
16.4

A
F

Open Source Software
1

2

1 2

3

4 5

Customer: Twitter Inc.
Business: MicroBlogging

Use-Cases 1/3 (pro!le):
- user can register an account
- user can "follow" other users
- user can create lists of users he follows

Use Cases 2/3 (send):
- user can send tweets
- tweets are based on words, each either
 a text "example", tag "#example", user reference
 "@example" or URL http://example.com
- tweets are either public broadcast or
 personal/direct messages
- user can re-tweet a message of others

Use Cases 3/3 (query):
- user can view timeline
 (chronological tweets of others he follows)
- user can search for tweets
 (by keyword "foo", tag "#foo", or user "@foo")
- user can view tag cloud

Frontends/Clients:
- mobile app (iOS, Android)
- desktop app (Windows, Mac OS X)
- web app
- embedded web widget
 (query use cases only)

Current Demand (as of 2012):
- 140M user pro!les
- 400M tweets/day
- 6393 tweets/second peak
- 140 characters/tweet
- 30K queries/second
- 300 GB/hour data in total
- 4,4 tweets/day/user on average
- 103,4 follower/user
- < 5s tweet-write-to-read-delay

Future Demand:
- quadratic user and tra"c growth

Technology-Given
Key Figure

Intermediate
Calculated Figure

Business-Given
Key Figure

Resulting
Calculated Figure

So what?

What are we talking about?

Resulting
Architecture Crux

Figures

Technology-Given
Key Figure
Catalogue

Conversion & Normalization

6.393 tweets/second peak 140 chars/tweet 350% overhead HTTP+TCP+IP+Ethernet
400.000.000 tweets/day (write) 4.630 tweets/second (write) 2,2 MB/s (write)

2.592.000.000 queries/day (read) 30.000 queries/second (read) 140,2 MB/s (read)
6,5 factor read/writes 10 tweets/query 142,4 MB/s

4,4 tweets/day/user 10000 Mbps 1250 MB/s
2,4 tweets/day (M. Fowler) 1000 Mbps 125 MB/s
0,8 tweets/day (R. Engelschall) 100 Mbps 12,5 MB/s

621.880.000 tweets/day (average) total 10 Mbps 1,25 MB/s
64,3% users are active at all

277.778 users/minute active

140.000.000 user profiles 300 GB/hour data in total 2000 requests/sec (read) AS performance
52.000 chars/users for profile 214 TB/month data in total 100 requests/sec (write) As performance

6,62 TB profile (total) 15,0 servers for writes
200% overhead storage 46,3 servers for reads

103,4 follower/user 1265,9 KB/s tweets
14.474.600.000 user follow links 104,3 GB/day tweets

32 bytes/link 3,1 TB/month tweets
0,42 TB links (total)

200 chars/log entry
6763,6 KB/s log

557,3 GB/day log
0,3 TB/disk (15K rpm) 16,6 TB/month log
8,0 disks/server
2,4 TB/server 9,2% ratio business data
8,2 server/month (new) 90,8% ratio infrastructure data

Storage Hardware Requirements

Twitter Information Traffic Bandwidth

Computing Hardware RequirementsStorage Requirements (static) Storage Requirements (dynamic)

Speci!cation (Example)

Calculation (Example)

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.1.01(2021-11-23), Authored 2011-2021 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.3.0 (2022-10-10), Copyright ©

 2012-2022 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
16.5

Back of the Envelope Calculation

Weighted Decision Matrix

Establish
Criterias

Find
Alternatives

Organize
Criterias

Hierarchically
Weight Criterias
(simply or AHP)

Sort Alternatives
Sequentially

Evaluate
Alternatives

against Criterias

Determine
Alternatives

Ranking

C1

C2

…

Cm

A1 A2 … An

E1,1w1 E1,2 … E1,n

E2,1w2 E2,2 … E2,n

…… … … …

Em,1wm Em,2 … Em,n

R1 R2 … Rn

Ci=1..m: Criteria i

Aj=1..n: Alternative j

Ei, j in { -2, -1, 0, +1, +2 }: Evaluation i,j

Rj=1..n = SUMi=1..m(wi * Ei,j): Rating j

Decision Making Process

Standard Criteria Catalogs

Software Selection:
Suitable Functionality
Available Usage Examples
Reasonable Documentation
Reasonable Support
Permissive License
Long-Term Release Track Record
Current Market Momentum

 Software Selection (Open Source):
 + Clean Source Code
 + Clean Build Process
 + Open Source License

 Software Selection (Library):
 + Non-Invasive Programming Model
 + Orthogonal Application Programming Interface
 + Minimum/No Dependencies
 + Non-Copyleft Open Source License

 Software Selection (Framework):
 + Orthogonal Application Programming Interface
 + Adequate Dependencies
 + Non-Overlapping Scope
 + Non-Copyleft Open Source License

 Software Selection (Tool):
 + Clean Deployment Procedure
 + Pleasant Command-Line Interface

 Software Selection (Application):
 + Clean Deployment Procedure
 + Pleasant Graphical User Interface

Software Architecture Evaluation:
Meets Functional Requirements
Meets Non-Functional Requirements
Adequate Technology Overhead
Single Dependency Direction
Distance to State of the Art (“modern”)
Distance to Most Simple Approach (“adequate”)
Distance to Mainstream Approach (“mainstream”)
Documented Architecture Decisions (“rationales”)
Documented Architecture Views
Documented Architecture Perspectives (NFR)

Rbest= MAXj=1..n(Rj): Best Rating

Rule 2: the best rating should be a least
 10% above the second best rating.

Rule 3: the best rating should cover at least
 80% of the requirements.

Best Practice Rules

wi=1..m:in [1/4, 1/2, 1, 2, 4]: Weighting i

It’s about subjective decision transparency,
not about objective decision making!

Notice
Rule 4: the Weighted Decision Matrices should
 cover at least all grand decisions.

Rule 1: the alternatives have to be
 really reasonably comparable.

C1+
A1
C4 C8

A2 … An

-
C1 C2 C7 C8C9C2

C2 C3 C4 C7 C5

…
…

Decision for Abest

Light-Weight Alternative:
qualitatively cherry-picking major
positive/negative backing criterias

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.1.1 (2022-05-20), Authored 2018-2022 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.1.0 (2021-09-26), Copyright ©

 2018-2021 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
16.6

Weighted Decision Matrix

Maturity Decision Process

Matrix Structure

Area1

Area2

…

Arean

0 1 … Gm-1

A … C

…

A … D

A … B

Matrix Design Process

Focus Area Definition

Id: <unique id of focus area>
Name: <unique name of focus area>

2 3

B

B

Gm

C

E

Define
Focus Areas

Organize
Focus Areas

Hierarchically

Define Maturity
Levels for each

Focus Area

Map Maturity
Levels onto

Maturity Scale

Determine
maximum

Maturity Level
of organization

Determine
minimum

Maturity Grade of
Organization

for each Focus Area

Focus
Areas

Maturity
Levels

Maturity
Scale

Maturity
Grade

Id1

Id2

…

Idn

A

B C

Determine minimum Maturity Level
fulfilled by an organization and project
from Maturity Level onto Maturity Scale.

Maturity Grade Determination

Id:
Level:
Name:
Goal:
Action:
Prerequisites:
References:

Maturity Level Definition

Notice: the Maturity Scale always starts
with 0, because an organization might not
be able to fulfil a Focus Area at all, i.e.,
it might to not even be on Maturity Level A.

Maturity Grade Zero

Notice: Maturity Levels are inherently
ordered within their Focus Area, but
optionally also form a dependency graph
by cross-referencing Maturity Levels of
other Focus Areas.

Maturity Level Prerequisites

<unique id of focus area>
<unique letter of maturity level>
<unique name of capability>
<purpose the capability serves>
<steps how to meet the capability>
<optional references to Id/Level>
<optional external references>

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.1 (2023-12-01), Authored 2022-2023 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.0 (2022-05-21), Copyright ©

 2022 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
16.7

Focus Area Maturity Model

Functionality,
Cruxes.

Rationale: Roughly describe the
functionality and the cruxes.

Format: Prose Abstract

Crux Flash

Name, Purpose, Motivation,
Actors, Devices.

Rationale: Roughly describe the
purpose and primary motivation.

Format: Prose Abstract

Elevator Pitch

Dialogs, Interaction,
Control Flow.

Rationale: Illustrate the major user
interface dialogs (or dialog types).

Format: Wireframe Graph Diagram

Dialog Storyboard

Actor Roles,
Use-Cases.

Rationale: Sketch the customer
journey through major use-cases.

Format: 2xN Table or UML UC Diag.

Customer Journey

Qualities,
Expectations.

Rationale: List requirements on
the major non-functional qualities.

Format: 2xN Table

Quality Requirements

Entities,
Relationships.

Rationale: Model major data
entities and their relationships.

Format: UML Class Diagram

Data Model

Actors, Systems,
Zones, Programs.

Rationale: Illustrate the major
system architecture components.

Format: Boxes’n’Lines Diagram

System Architecture

Aspects, Amounts,
Sizes, Total Sizes, Units.

Rationale: Sketch the sizing of
major entities and system parts.

Format: 5xN Table

Sizing Sketch

Vote is a portable mobile-!rst designed
application for easily performing
anonymous online votings within a
small group of people to !gure out their
opinions or moods.
 Votings are created in advance,
executed at a certain time, conducted
by the users, and then !nally reported.

Votings can be quickly accessed by QR-
code or URL and are based on one or
more questions and corresponding
multiple-choice-based answers.
 Votings are interactively conducted,
and answers are received and reported
either asynchronously in batches
(o"ine voting) or even synchronously in
real-time (online voting).

3 4

5 6

8 7

(Example) (Example)(Method)

D1

D D

T

T

T

T

Account
id: String#
realname: String
username: String!
password: String!
securityQuestion: String
securityAnswer: String
language: String
theme: String

Session
id: String#

Device
id: String#

Voting
id: String#
code: String!
title: String!
executable: Boolean!
visible: Boolean!
intermediateResults: Boolean!
public: Boolean!

Question
id: String#
title: String!
text: String!
visible: Boolean!
votable: Boolean!

Answer
id: String#
text: String!
isAbstain: Boolean!

hasQuestions hasAnswers

belongsToQuestionbelongsToVoting

ownedByAccount votedOnDevices

forAccount onDevice

participatedByAccounts

usesSessions usesSessions

votedAnswersownsVotings participatesVotings

participatedBySessions

*

*

participatesVotings

1 1

1 *

**

* *

*

*

1 1

* *

Vote
(SV/master)

Vote
(SV/worker)

Vote
(SV/worker)

RedisPostgreSQL

Reverse
proxy

…… Vote
(UI/client)

Vote
(UI/client)

Vote
(UI/client)

D2RE RE

UX UX

SYRE

SWSW

1 Creation Step RE Requirements Engineering UX User Experience SY Systems Architecture SW Software Architecture Domain ScopeD T Technology Scope

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.3 (2020-07-20), Authored 2019-2020 by D
r. Ralf S. Engelschall

G
raphical Illustration: Version 1.0.3 (2020-07-20), Copyright ©

 2019-2020 D
r. Ralf S. Engelschall <http://engelschall.com

>, All Rights Reserved.
U

nauthorized Reproduction Prohibited.
A

F
17.1

Big Picture (8-D)

Development
Aspects of the software development
process for versioning, building,
testing, maintaining, and enhancing
the system.

Functionality
System's functional elements, their
responsibilities, interfaces, and
primary interactions (control !ow).

Information
Static data structures and information
!ows to store, manipulate, manage,
and distribute information.

Concurrency
Concurrency structure of the system
and mapping of functional elements
to concurrency units (processes,
threads, transaction scopes).

Context
Relationships, dependencies, and
interactions between the system and
its run-time environment (people,
systems, external entities).

Deployment
Required technical environment and
mapping of software elements to
runtime environment that will
execute them.

Operation
Aspects to operate, administer,
update, upgrade and support the
system when running in its
production environment.

Availability & Resilience
Ability of the system to be fully or
partly operational when required and
to e"ectively handle failures.

Constraints & Resources
Ability of the system to be designed,
built, deployed, and operated within
known constraints around people,
budget, time, and materials.

Evolution & Change
Ability of the system to be !exible in
the face of the inevitable change that
all systems experience over time.

Internationalization & Localization
Ability of the system to be
independent from and adaptable to
any particular language, country, or
cultural group.

Performance & Scalability
Ability of the system to predictably
execute within its mandated
performance pro#le and to handle
increased processing volumes.

Regulation & Compliance
Ability of the system to conform to
local and international laws, quasi-
legal regulations, company policies,
and other rules and standards.

Security & Recoverability
Ability of the system to reliably
control and audit who can perform
what actions on what resources and
to detect and recover from failures.

Usability & Accessibility
Ability of the system to allow people
to e"ectively interact with the system
and also to be even used by people
with disabilities.

Application Architecture ViewpointsDevelopment Process Viewpoints Application Overview Viewpoints Operation Process Viewpoints

Cross-Cutting Perspectives

2 1

3

4

5 6

7

Licensed to Technische U
niversität M

ünchen (TU
M

) for reproduction in Com
puter Science lecture contexts only.

Intellectual Content: Version 1.0.4 (2019-09-15), Authored 2011-2019 by D
r. Ralf S. Engelschall, based on N

ick Rozanski, Eon W
oods, "Softw

are System
s Architecture", 2nd ed. 2011, ISBN

 978-0-321-71833-4
G

raphical Illustration: Version 1.0.8 (2018-09-15), Copyright ©
 2011-2018 D

r. Ralf S. Engelschall <http://engelschall.com
>, All Rights Reserved.

U
nauthorized Reproduction Prohibited.

A
F

17.2

Viewpoints & Perspectives

	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1
	Canvas 1

