
Dr. Ralf S. Engelschall

Software Engineering
in der industriellen Praxis

(SEIP)



The architect must regularly “think clearly” about
certain problems or issues. For this purpose, it is a good
idea to go through the four-stage Think Clearly
process, once or even iteratively if required. The
process consists of four clearly differentiated
disciplines.

In the first two disciplines Investigate & Research and
Structure & Sort, one tries to act analytically,
objectively, and openly to diverge the problem or the
question, i.e., to collect many facts and to and to build
up a hypothesis by structuring and sorting.

In the last two disciplines Reduce & Complement and
Integrate & Present, one tries to act creatively,
subjectively, and courageously and to finally converge
with regard to the problem or question, i.e., to reduce
the hypothesis to a coherent theory and then integrate
it to the solution or the answer.

In the first discipline Investigate & Research one finds
facts about own knowledge and experience
(Reflecting) or by research in external sources
(Searching), ones verifies the facts through sources
(Verification) and ones classifies the facts by
enrichment with tags (Tagging).

In the second discipline Structure & Sort one divides or
aggregates the facts for the best possible “sort purity”
(Typing), one groups the facts hierarchically via tags
(Clustering), one connects related facts across groups
(Relating) and one sorts the facts in each group.

In the third discipline, Reduce & Complement, one
replaces facts or renames facts if necessary
(Substituting), adds missing facts (Extending),
prioritizes the facts according to certain criteria
(Prioritization) and discard irrelevant or redundant
facts (Rejecting).

In the fourth and last discipline Integrate & Present
one specializes too general facts if necessary
(Specialization), generalizes too specific facts if
necessary (Generalization), one aggregates or
combines facts (Integration) and converts facts into
their target representation (Presentation).

Questions

In the Think Clearly process to “think clearly,” one
should think how about the first two and the last
two disciplines?





The Problem Solving Heuristics are experience-based
techniques or strategies that can be used for problem-
solving when other approaches do not make any
progress.

The heuristics are mainly used for inspiration so that
you don’t spend too long and instead find a new
starting point for solving the problem (“If you find
yourself in a hole, stop digging!”).

With Research one searches for facts, with
Brainstorming ones proposes a large number of
spontaneous solution ideas, in Analogy one thinks of
similar problems that have already been solved, and in
Reduction one transforms the problem into an already
solved problem.

With Abstraction one solves the problem first in a more
abstract model, with Generalization one generalizes
the problem to one with fewer special cases, in
Specialization one tries to be inspired by a special case,
and in Variation one tries to change one’s perspective
on the problem.

In Lateral Thinking one approaches the problem in a
deliberately indirect and creative way, with Hypothesis
Proof one searches for a solution by proof for a
possible or not possible fictitious solution, with Root
Cause one goes to the root of the problem step by step
and in Means End one tries to approach the solution in
small steps.

In Backward Search one tries to get from a fictitious
solution backward on the way to the solution, with
Backtracking one chooses a partly new path in the
direction of the solution in case of a failure, in Divide &
Conquer one breaks down the big problem into
smaller and easier to solve subproblems, and with Trial
& Error one tries all solution combinations as a last
resort and/or if the solution space is small enough.

Questions

When is the rather mundane Problem Solving
Heuristic called Trial & Error acceptable?





One can classify a technology (or a concrete
technological product) very well using two models, the
Technology Life-Cycles: the Gartner Hype-Cycle for
Emerging Technologies and the Moore Technology
Adoption Life-Cycle.

The Gartner Hype-Cycle for Emerging Technologies
shows the usual life-cycle of a technology over the
temporal Product Phases (in the x-axis) Innovation
Trigger, Peak of Inflates Expectations, Trough of
Disillusionment, Slope of Enlightenment and Plateau
of Productivity, and via Customer Expectations (in the
y-axis). It thus primarily maps the maturity level of a
technology and shows expectations of the technology
on the market at the time.

The Moore Technology Adoption Life-Cycle shows the
level of acceptance of the technology in different types
of markets. These markets are characterized by the
fundamentally different market participants
Innovators, Early Adopters, Early Majority, Late
Majority and Laggards, where usually a certain gap
(The Chasm) exists between the Early Market of
visionaries and the Mainstream Market of pragmatists.
To bridge this gap, a technology usually has to be
developed in a second generation.

The Moore Technology Adoption Life-Cycle is also
related to the Innovators Dilemma. This is because it is
possible to calculate the maximum achievable market
share of a technology over time in the form of an S-
curve. The key points for a technology are at about 25%
(The Chasm) and 50% market share. In addition, this S-
curve shows the Innovators Dilemma, i.e., the fact that
a new technology always has to bridge a dry spell in
niches of the Early Market before it can achieve a
larger share of the Mainstream Market.

Questions

Which model of a Technology Life-Cycle
represents the maturity of a technology over time?



Which model of a Technology Life-Cycle
represents the adoption of a technology in
different markets?





Open Source Software is software that has been
placed under an Open Source License. All licenses
recognized as Open Source Licenses meet the Open
Source Definition, which states, among other things,
that the software may be freely distributed in source
code and changed and that there is no discrimination
of persons, groups, or purposes.

In practice, one knows three Open Source Personality
Streams: Software Sharing with dogmatic and political
persons, who are fighting for social justice; Software
Hacking with fundamental and artistic persons, who
develop software with maximum ambition; and
Software Engineering with pragmatic people who use
the software in practice.

There are hundreds of Open Source Licenses. However,
one can split them into a few classes and sort them
according to their strength, i.e., how strongly they
protect the software itself. One distinguishes generally
between licenses without and with a so-called Copyleft
effect. This consists of license clauses in order to keep
the original software free (in the sense of freedom and
availability, not free of charge) and additionally to keep
all modifications and extensions to the software also
free.

The weakest license in practice is Creative Commons
Zero (CC0) (or Public Domain), which effectively allows
anyone to do anything.

The strongest license is the Affero General Public
License (AGPL), which protects software even in the
case of use in the form of Software as a a Service (SaaS).
At the Copyleft boundary is the Apache License, which
does not yet have a Copyleft effect but still tries to
maximally protect the software and the originator.

In practice, a distinction is made between licenses with
no, weak and strong Copyleft. To decide for a software
under which class of license one publishes it, one
differentiates between two dimensions: on the one
hand, the type of software (Tool, Framework or
Library) and on the other hand, the level of creation of
the software. A Tool or a Framework with a medium or
high level of creation is usually under weak or even
strong Copyleft to protect the software and the author
to the maximum. A Library or a Framework with a
medium or low level of intellectual property is under a
weak or even no Copyleft in order to achieve a
maximum distribution of the software.

Questions

What do you call the effect in licenses of Open
Source Software, in which the software remains
free (in the sense of freedom and availability, not
in the sense of free of charge) and additionally all
modifications and extensions remain free as well?





To get a better “feeling” for the scope and the degree of
difficulty of an architecture to be developed, it is a
good idea to do a Back of the Envelope Calculation
(“rough calculation”). The method is as follows: in a
spreadsheet, a two-column table is created in which
the first column contains the number and the second
column contains the unit.

Now, in the first step, the Business-Given Key Figures,
i.e., the technically known numbers, are entered into
the table as the first rows. They get the first color for
differentiation.

Because these numbers usually do not tell enough, in a
second step, different Technology-Given Key Figures
are entered as rows. These may be taken from existing
catalogs or are available from your own experience.
They are given the second color for differentiation and
serve above all as comparative figures to the Business-
Given Key Figures.

In the third step, both the Business-Given Key Figures
and the the Technology-Given Key Figures and
compared to each other. The intermediate results,
called Intermediate Calculated Figures, are
spreadsheet cells with formulas, which get the third
color to distinguish them.

Whenever an Intermediate Calculated Figure (or
possibly already an Business-Given Key Figure or a
Technology-Given Key Figure) provides a decisive hint
or insight, you change the row to the fourth color. If
this insight has potential relevance for the subsequent
architecture (and thus represents a key point), the row
is changed to the fifth color, which shows the Resulting
Architecture Crux Figure.

Afterwards, you can optionally bundle the different
rows into logical groups in the spreadsheet to make the
spreadsheet clearer.

Questions

What method can be used to get a better “feel” for
the scope and difficulty of an architecture to be
developed?





In order to make qualitative decisions transparently
and comprehensibly (but not necessarily objective) and
at the same time to document the decision-making
process, one can apply the method of the Weighted
Decision Matrix.

The prerequisite is that the decision to be made is the
choice of one of many alternatives. These are entered in
a spreadsheet as columns. Optionally, the alternatives
can be put into a meaningful order.

Then one specifies different criteria, which are to be
used for the decision. The goal is to distinguish the
alternatives with as less criteria as possible. Each
criterion is given a weighting. Optionally, the criteria
can be grouped into a hierarchy and the groups into a
meaningful order.

Subsequently, one determines a weighting for each
criterion, which indicates how strongly the criterion is
considered in the decision-making process.

Now all alternatives are evaluated against all criteria.
With few criteria and many alternatives, one can
evaluate all criteria per alternative. If there are many
criteria, it is advisable to evaluate all alternatives per
criterion. As an evaluation scale, it is advisable to use -2,
-1, 0, +1, +2, in order to have a middle (0), positive/
negative evaluations (+1, -1) and positive/negative
superlatives (+2, -2).

Finally, for each alternative, the product sum of the
criterion weighting column and the alternative rating
column is calculated. The decision is then made for the
alternative with the maximum amount in the product
sum.

Questions

How to make the qualitative decision to choose
one of many alternatives can be made
transparently and comprehensibly and document
it at the same time?





The Focus Area Maturity Model (FAMM) is a method to
assess the maturity of an organization with respect to a
specific topic area.

The structure of a FAMM is a matrix of horizontal Focus
Areas and their their Maturity Levels and possible
vertical Maturity Grades on a Maturity Scale. Per Focus
Area there can be one or any number of Maturity Levels
and and their positions on the Maturity Scale are based
on the importance of the Focus Areas and the
relationship between the Focus Areas and their
Maturity Levels. This matrix is designed in a first step for
a topic area and is then fixed.

In order to determine the Maturity Level of an
organization, determine for each Focus Area the
maximum Maturity Level the organization fulfills. The
Maturity Level of the organization is then derived from
the minimum Maturity Level across all Focus Areas and
the projection of this Maturity Level onto the Maturity
Scale.

Since the Maturity Levels should only ever be
positioned in the matrix above Maturity Grade 0, in the
worst case, an organization has a Maturity Grade 0 if it
does not fulfill a Focus Area at all.

Questions

From whom can you determine the maturity level
with the Focus Area Maturity Model (FAMM)?





In order to understand a Business Information System
to be created at a very early stage, a so-called Big
Picture should be created. This can be developed
according to the method 8-D of Dr. Ralf S. Engelschall,
which consists of 8 dimensions (4 domain-specific and
4 technical ones).

In the first step, an Elevator Pitch is created, which is
defined by Name, Purpose, Actors and Devices to give
a rough overview of the solution. In the second step, an
additional Crux Flash is created, which roughly
describes the functionality and its main cruxes. Both
steps usually consist of only a few prose sentences.

In the third step, a Customer Journey is outlined, which
is describe, via Actor Roles and Use Cases, which use
cases the different actor roles experience. This usually
consists of only a 2-column table.

In the fourth step, a Dialog Storyboard is illustrated,
which is shown via Dialogs, Interactions and Control
Flow, and which illustrates the user interface the
application offers. This usually consists of a graph of
Wireframes (intentionally very rough and fuzzy
sketches of the dialogs).

In the fifth step, the Quality Requirements are listed
via Qualities and Expectations, to show which
expectations exist concerning non-functional quality
properties. These are usually executed as a 2-column
table.

In the sixth step, the System Architecture is illustrated,
which via Actors, Systems, Tiers/Areas and Programs
shows, which main components will exist on the level
of System Architecture. This usually consists of a
“Boxes’n’Lines” diagram.

In the seventh step, the Data Model is modeled, which,
via Entities and Relationships, shows which main
domain-specific classes and relationships the data of
the application has. This is usually represented as a
“UML Class Diagram”.

In the eighth and last step, a Sizing Sketch is created,
which shows via Aspects, Amounts, Sizes, Total Sizes
and Units, which orders of magnitude (in the “worst
case”) are to be expected with the data and the system
components. This usually consists of a 5-column table.

Questions

What are the eight dimensions of the 8-D model
supposed to do?





In order to create an Architecture Description (in the
German context usually called IT-Konzept) for an
application, one documents methodically via
Viewpoints and Perspectives.

The former are 2-dimensional diagrams with an
explanation of a single specific fact. The latter are
explanations of an overall issue, all of which are derived
from Non-Functional Requirements.

How many Viewpoints and Perspectives actually need
to be documented depends on the Concern of the
Stakeholders! A standard set of Viewpoints and
Perspectives is the following.

For the Viewpoints it makes sense to document for
instance 7 particular Views: Context, Functionality,
Information, Concurrency, Development,
Deployment and Operation. The two viewpoints
Functionality and Information are the two most
important ones to document the architecture of an
application. They should always be documented and,
therefore, never omitted!

For the Perspectives, it makes sense to document for
instance 8x2 particular Aspects which are based on
common Non-Functional Requirements: Evolution &
Change, Regulation & Compliance,
Internationalization & Localization, Usability &
Accessibility, Performance & Scalability, Availability &
Resilience, Constraints & Resources and Security &
Recoverability. For the Perspectives in practice one
has to take into account all the relevant Non-
Functional Requirements relevant to the project and
must not limit oneself to just these usual ones.

Questions

Which two Viewpoints in the Architecture
Description of an application should always be
documented?




	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions

