TECHNISCHE
MUNCHEN

Software Engineering

in der industriellen Praxis
(SEIP)

Dr. Ralf S. Engelschall

W ARCHITECTURE
f FUNDAMENTALS

Problem or
Question

Think Clearly

Hypothesis

TECHNISCHE
UNIVERSITAT
MUNCHEN

Solution or
Answer

INVESTIGATE & RESEARCH

1. Reflecting

(find facts via own kn ge/experience)

Searching

STRUCTURE & SORT

1.Typing

(split/aggr facts according to type)

Clustering

REDUCE & COMPLEMENT

1. Substituting

(substitute/rename facts)

2. Extending

INTEGRATE & PRESENT

2. Generalization

(find fa body of knowledge) cally group facts by tags)

3. Verification

(cross-check facts according to sources)

3. Relating

(link source to target facts)

4.Tagging 4. Ordering

(classify v gs) (order facts in each cluster)

The architect must regularly “think clearly” about
certain problems or issues. For this purpose, it is a good
idea to go through the four-stage Think Clearly
process, once or even iteratively if required. The
process consists of four clearly differentiated
disciplines.

In the first two disciplines Investigate & Research and
Structure & Sort, one tries to act analytically,
objectively, and openly to diverge the problem or the
question, i.e., to collect many facts and to and to build
up a hypothesis by structuring and sorting.

In the last two disciplines Reduce & Complement and
Integrate & Present, one tries to act creatively,
subjectively, and courageously and to finally converge
with regard to the problem or question, i.e., to reduce
the hypothesis to a coherent theory and then integrate
it to the solution or the answer.

In the first discipline Investigate & Research one finds
facts about own knowledge and experience
(Reflecting) or by research in external sources
(Searching), ones verifies the facts through sources
(Verification) and ones classifies the facts by
enrichment with tags (Tagging).

(add still missing facts) (generalise too specific facts)

3. Priorization 3. Integration
o/link facts)

(priorize facts according to criterias) gregate

4. Presentation

(convert facts into target form)

4. Rejecting

(reject non-relevant/redundant facts)

In the second discipline Structure & Sort one divides or
aggregates the facts for the best possible “sort purity”
(Typing), one groups the facts hierarchically via tags
(Clustering), one connects related facts across groups
(Relating) and one sorts the facts in each group.

In the third discipline, Reduce & Complement, one
replaces facts or renames facts if necessary
(Substituting), adds missing facts (Extending),
prioritizes the facts according to certain criteria
(Prioritization) and discard irrelevant or redundant
facts (Rejecting).

In the fourth and last discipline Integrate & Present
one specializes too general facts if necessary
(Specialization), generalizes too specific facts if
necessary (Generalization), one aggregates or
combines facts (Integration) and converts facts into
their target representation (Presentation).

Questions
@© Inthe Think Clearly process to “think clearly,” one

should think how about the first two and the last
two disciplines?

" ARCHITECTURE
7 FUNDAMENTALS

Research Abstraction

Solving the problem in a
model of the problem before
applying it to the real problem
to get a better understanding.

Crawling the problem
domain's body of knowledge
to find starting points.

Brainstorming Generalization

Suggesting larger number
of solution ideas for further
combination and development.

Thinking about the problem
more abstract to get rid of
special cases.

Analogy Specialization

Thinking in terms of similar
problems for which solutions
are known to get inspired.

Solving a special case first
to get an impression towards
the full solution.

Reduction Variation

Transform the problem
into another one for which
a solutions already exists to
reduce solving efforts.

Changing the problem context
or expressing the problem
differently to find a not
obvious solving lever.

Definition: Heuristic — fallible experience-based technique or strategy for problem solving in
case Rule of Thumb Guessing, Intuitive Judgement, Common Sense and Stereotyping
are either not sufficient or not appropriate.

The Problem Solving Heuristics are experience-based
techniques or strategies that can be used for problem-
solving when other approaches do not make any
progress.

The heuristics are mainly used for inspiration so that
you don't spend too long and instead find a new
starting point for solving the problem (“If you find
yourself in a hole, stop digging!”).

With Research one searches for facts, with
Brainstorming ones proposes a large number of
spontaneous solution ideas, in Analogy one thinks of
similar problems that have already been solved, and in
Reduction one transforms the problem into an already
solved problem.

With Abstraction one solves the problem first in a more
abstract model, with Generalization one generalizes
the problem to one with fewer special cases, in
Specialization one tries to be inspired by a special case,
and in Variation one tries to change one’s perspective
on the problem.

Problem Solving Heuristics

Lateral Thinking

Approaching the problem
indirectly and creatively
to find a not obvious
solving lever.

Hypothesis Proof

Assuming a possible solution
and trying to prove (or
disprove) the assumption to
find starting points.

Root Cause

Asking "Why?" five times in
sequence to explore the
cause-and-effect relationships
underlying the problem.

Means End

Choosing an action from
scratch just at each step to
move closer and closer to
the solution.

mm

Backward Search

Looking at the expected
results and determine which
operations could bring

you to them.

Backtracking

Remembering path towards
the solution and on failure
tracking back and choosing
a new path.

Divide & Conquer

Breaking down the large
complex problem into
smaller, easier solvable
partial problems.

Trial & Error

As a last resort, brute-force
testing all potential solutions
in case of a small enough
total solution space.

TECHNISCHE
UNIVERSITAT
MUNCHEN

In Lateral Thinking one approaches the problem in a
deliberately indirect and creative way, with Hypothesis
Proof one searches for a solution by proof for a
possible or not possible fictitious solution, with Root
Cause one goes to the root of the problem step by step
and in Means End one tries to approach the solution in

small steps.

In Backward Search one tries to get from a fictitious
solution backward on the way to the solution, with
Backtracking one chooses a partly new path in the
direction of the solution in case of a failure, in Divide &
Conquer one breaks down the big problem into
smaller and easier to solve subproblems, and with Trial
& Error one tries all solution combinations as a last
resort and/or if the solution space is small enough.

Questions

@® When is the rather mundane Problem Solving
Heuristic called Trial & Error acceptable?

W ARCHITECTURE
7 FUNDAMENTALS

Gartner Hype-Cycle
for Emerging Technologies

Product Phases

Technology Life-Cycles

Gartner Hype-Cycle
for Emerging Technologies

en
w

According to [1], provides “a graphic
representation of the maturity and adoption of

TECHNISCHE

UNIVERSITAT

MUNCHEN
Moore Technology

Adoption Life-Cycle

According to [3], describes “the adoption
or acceptance of a new product or

. technologies and applications, and how they innovation, according to the
In.?l%’gte'?n E?qili:é Jilgllljgswoonf- o EnInglﬁFe enmen t Pl:‘l)adtsgt;v?,fy) are potentially relev?r)t to solving real b}|§insss demograph_ic and psychological
Expectations ment Time problems. and exploiting new opportunities.”It characteristics of dgﬁ.ned adopter
100% gives “a view of how a technology or groups.” The five distinct adopter groups
no% application will evolve over time.” The five are:
Gartner product phases are:

Hype-Cycle “Innovators: had larger” business, “were
for Emerging “Innovation Trigger: A potential technology more educated, more prosperous and
Technologies breakthrough kicks things off. Early proof-of- more risk-oriented.

concept stories and media interest trigger
— significant publicity. Often no usable products Early Adopters: younger, more
° ’ 75% exist and commercial viability is unproven. educated, tended to be community
leaders, less prosperous.
2 Peak of Inflated Expectations: Early publicity
S X produces a number of success stories — often Early Majority: more conservative but
s |ng§icnt§n accompanied by scores of failures. Some open to new ideas, active in community
1% v companies take action; many do not. The peek and influence to neighbours.
& /’\‘ J:; can be also considered a direct result of the
50% LL — 50% Dunning-Kruger Effect, a “cognitive bias in which Late Majority: older, less educated, fairly
9] 9 people mistakenly assess their cognitive ability conservative and less socially active.
g s as greater than it is”[2] and hence exaggerate
] = in their expectations. Laggards: very conservative, had small”
o] business “and capital, oldest and least
Trough of Disillusionment: Interest wanes as educated”
experiments and implementations fail to
deliver. Producers of the technology shake out According to [4], there is also a“chasm
25% 25% or fail. Investments continue only if the between the early adopters of the
Moore surviving providers improve their products to product (the technology enthusiasts and
Technology the satisfaction of early adopters. visionaries) and the early majority (the
Adoption 5 X pragmatists),” because “visionaries and
Life-Cycle Slope of Enlightenment: More instances of pragmatists have very different
' how the technology can benefit the enterprise expectations”and technology is usually
. start to crystallize and become more widely switched, at last at the Inflection Points.
0% 0% understood. Second- and third-generation
2.5% 13.5% ' 34% 34% 16% products appear from technology providers. Crossing The Chasm [4] is related to the
oeyatars Early ' Early e Laggards More enFerprisesfund Pilots; conservative Innovator’s Dilemma [5], where “new
Adopters Majority Majority companies remain cautious. entry next generation products” usually
L N | | “find niches away from the incumbent
T el N 1 Plateau of Productivity: Mainstream adoption customer set to build the new product”
Early Market The Mainstream Market starts to take off. Criteria for assessing provider
(“Visionaries”) Chasm (“Pragmatists”) viability are more clearly defined. The

Moore Technology
Adoption Life-Cycle

One can classify a technology (or a concrete
technological product) very well using two models, the
Technology Life-Cycles: the Gartner Hype-Cycle for
Emerging Technologies and the Moore Technology
Adoption Life-Cycle.

The Gartner Hype-Cycle for Emerging Technologies
shows the usual life-cycle of a technology over the
temporal Product Phases (in the x-axis) Innovation
Trigger, Peak of Inflates Expectations, Trough of
Disillusionment, Slope of Enlightenment and Plateau
of Productivity, and via Customer Expectations (in the
y-axis). It thus primarily maps the maturity level of a
technology and shows expectations of the technology
on the market at the time.

The Moore Technology Adoption Life-Cycle shows the
level of acceptance of the technology in different types
of markets. These markets are characterized by the
fundamentally different market participants
Innovators, Early Adopters, Early Majority, Late
Majority and Laggards, where usually a certain gap
(The Chasm) exists between the Early Market of
visionaries and the Mainstream Market of pragmatists.
To bridge this gap, a technology usually has to be
developed in a second generation.

technology's broad market applicability and
relevance are clearly paying off."

[1] https://gtnr.it/36rBT4X
[2] https: 4Lkx
3] https:

(4] https:
5] https:

The Moore Technology Adoption Life-Cycle is also

related to the Innovators Dilemma. This is because it is
possible to calculate the maximum achievable market
share of a technology over time in the form of an S-
curve. The key points for a technology are at about 25%
(The Chasm) and 50% market share. In addition, this S-
curve shows the Innovators Dilemma, i.e., the fact that
a new technology always has to bridge a dry spell in
niches of the Early Market before it can achieve a
larger share of the Mainstream Market.

Questions

@® Which model of a Technology Life-Cycle

represents the maturity of a technology over time?
@© Which model of a Technology Life-Cycle
represents the adoption of a technology in
different markets?

[o Open Source Software UM

Open Source Definition Open Source Personality Streams

Distribution terms (license) of Open Source Software
must be compliant with the following criterias:

- Free Redistribution

- (Original) Source Code (Availability)

- Derived Works (Allowance)

- Integrity of the Author's Source Code

- No Discrimination Against Persons or Groups
- No Discrimination Against Fields of Endeavor
- Distribution of (Non-Exclusive) License

- License Must Not Be Specific to a Product

- License Must Not Restrict Other Software

- License Must Be Technology-Neutral

Most Popular Open Source Licenses

Non-Copyleft
BSD< BSD!3C!

Choosing an Open Source License

S: Strong Copyleft (e.g. GPL)

BSDMC]

§ Software Sharing
@ Software Hacking

€ Software Engineering

(strong) 1 (weak)

CDDL'®

Dogmatism
Social Equity
Politics

Science

Fundamentalism

Private

Hacking

Pragmatism
Business
Engineering

Industry

(strong)

AGPL:

License Compliance Checking Meta-Model

software W:Weak Copyleft (e.g. MPL, LGPL) IW‘
type N: Non- Copyleft (e.g. MIT, Apache) has . L s
“~ q INumber
i =
: 2 2
! S x
i UseType Isdefined for is defined for
Tool ! - 3 range of fange ol T
[2 longs t
_____________________ | Description & [License License License Component Component Product
Group [® Declaration Jigee Class . Usage fig
'S v T | o 2|
3 [2 |~ g =N
Framework Condition [7e72 [o £ e Name
Wd g £ E N e
g = b physically
""""""""" Description e conkins
h
- i i i
Library ! (O %= vodeing @ Masng Cheans O eaditng
i
i iginali DEFCON
N i , originality) |
i i P &size Level
! ! H . .
low | med | high 1 i i i
H
i ! comenspachc.

Open Source Software is software that has been
placed under an Open Source License. All licenses
recognized as Open Source Licenses meet the Open
Source Definition, which states, among other things,
that the software may be freely distributed in source
code and changed and that there is no discrimination
of persons, groups, or purposes.

In practice, one knows three Open Source Personality
Streams: Software Sharing with dogmatic and political
persons, who are fighting for social justice; Software
Hacking with fundamental and artistic persons, who
develop software with maximum ambition; and
Software Engineering with pragmatic people who use
the software in practice.

There are hundreds of Open Source Licenses. However,
one can split them into a few classes and sort them
according to their strength, i.e., how strongly they
protect the software itself. One distinguishes generally
between licenses without and with a so-called Copyleft
effect. This consists of license clauses in order to keep
the original software free (in the sense of freedom and
availability, not free of charge) and additionally to keep
all modifications and extensions to the software also
free.

The weakest license in practice is Creative Commons
Zero (CCO) (or Public Domain), which effectively allows
anyone to do anything.

The strongest license is the Affero General Public
License (AGPL), which protects software even in the

At the Copyleft boundary is the Apache License, which
does not yet have a Copyleft effect but still tries to
maximally protect the software and the originator.

In practice, a distinction is made between licenses with
no, weak and strong Copyleft. To decide for a software
under which class of license one publishes it, one
differentiates between two dimensions: on the one
hand, the type of software (Tool, Framework or
Library) and on the other hand, the level of creation of
the software. A Tool or a Framework with a medium or
high level of creation is usually under weak or even
strong Copyleft to protect the software and the author
to the maximum. A Library or a Framework with a
medium or low level of intellectual property is under a
weak or even no Copyleft in order to achieve a
maximum distribution of the software.

Questions

© Whatdo you call the effect in licenses of Open
Source Software, in which the software remains
free (in the sense of freedom and availability, not
in the sense of free of charge) and additionally all
modifications and extensions remain free as well?

case of use in the form of Software as a a Service (SaaS).

vol. ET0

/<~ Back of the Envelope Calculation TLTI

Specification (Example)

Customer: Twitter Inc.
Business: MicroBlogging

Use-Cases 1/3 (profile):

- user can register an account

- user can "follow" other users

- user can create lists of users he follows

——— ———-

Use Cases 2/3 (send):

- user can send tweets

- tweets are based on words, each either
a text "example’, tag "#example", user reference
"@example" or URL http://example.com

- tweets are either public broadcast or
personal/direct messages

- user can re-tweet a message of others

Resulting
Architecture Crux
Figures

Use Cases 3/3 (query):
- user can view timeline
(chronological tweets of others he follows)
- user can search for tweets
(by keyword "foo", tag "#foo", or user "@foo")
- user can view tag cloud

Frontends/Clients:
- mobile app (i0S, Android)
- desktop app (Windows, Mac OS X)
- web app
- embedded web widget
(query use cases only)

tweets/second peak
LI tweets/day (write)
2.592.000.000 queries/day (read)
6,5 factor read/writes

Current Demand (as of 2012):
- 140M user profiles

- 400M tweets/day

- < 55 tweet-write-to-read-delay

- 6393 tweets/second peak /I
- 140 characters/tweet ’ IEYTXTEX user profiles
- 30K queries/second o= 52.000 chars/users for profile
. i T8 profile (total)
- 300 GB/hour data in total i
- 4,4 tweets/day/user on average | IETEY follower/user
- 1034 follower/user i 14.474.600.000 user follow links
: 32 bytes/link
]
;

Y v ks (tota)

Storage Hardware Requirements

Future Demand:

- quadratic user and traffic growth i
0,3 TB/disk (15K rpm)

8,0 disks/server
2,4 TB/server

IR < ver/month (new)

To get a better “feeling” for the scope and the degree of
difficulty of an architecture to be developed, itis a
good idea to do a Back of the Envelope Calculation
(“rough calculation”). The method is as follows: in a
spreadsheet, a two-column table is created in which
the first column contains the number and the second
column contains the unit.

Now, in the first step, the Business-Given Key Figures,
i.e., the technically known numbers, are entered into
the table as the first rows. They get the first color for
differentiation.

Because these numbers usually do not tell enough, in a
second step, different Technology-Given Key Figures
are entered as rows. These may be taken from existing
catalogs or are available from your own experience.
They are given the second color for differentiation and
serve above all as comparative figures to the Business-
Given Key Figures.

Calculated Figure

Twitter Information

TECHNISCHE
UNIVERSITAT
MUNCHEN

Technology-Given

Business-Given Technology-Given

X : Key Figure
Key Figure Key Figure Catalogue 3
l l N T '

\\ . PR

. Intermediate

Calculated Figure

Resulting

Calculation (Example)

Traffic Bandwidth

350% overhead HTTP+TCP+IP+Ethernet
2,2 MB/s (write)
140,2 MB/s (read)

T ch et

4.630 tweets/second (write)

ERX] queries/second (read)

10 tweets/query MB/s
YA tweets/day/user 10000 Mbps 1250 MB/s
2,4 tweets/day (M. Fowler) 1000 Mbps T vs/s
0,8 tweets/day (R. Engelschall) 100 Mbps 12,5 MB/s
621.880.000 tweets/day (average) total 10 Mbps 1,25 MB/s

64,3% users are active at all
277.778 users/minute active

Storage Requirements (dynamic)
E[1) GB/hour data in total
pAL] TB/month data in total

200% overhead storage
1265,9 KB/s tweets.

104,3 GB/day tweets

IR i/ month tweets

Computing Hardware Requirements

2000 requests/sec (read) AS performance
100 requests/sec (write) As performance

PN servers for writes
LIE] servers for reads

200 chars/log entry
6763,6 KB/s log
557,3 GB/day log

[T e /month log
ratio business data

90,8% ratio infrastructure data

In the third step, both the Business-Given Key Figures
and the the Technology-Given Key Figures and
compared to each other. The intermediate results,
called Intermediate Calculated Figures, are
spreadsheet cells with formulas, which get the third
color to distinguish them.

Whenever an Intermediate Calculated Figure (or
possibly already an Business-Given Key Figure or a
Technology-Given Key Figure) provides a decisive hint
or insight, you change the row to the fourth color. If
this insight has potential relevance for the subsequent
architecture (and thus represents a key point), the row
is changed to the fifth color, which shows the Resulting
Architecture Crux Figure.

Afterwards, you can optionally bundle the different
rows into logical groups in the spreadsheet to make the
spreadsheet clearer.

Questions

© What method can be used to get a better “feel” for
the scope and difficulty of an architecture to be
developed?

W ARCHITECTURE o L L TECHNISCHE
e weens \Neighted Decision Mat TUTI 2
X ig ision Matrix

Standard Criteria Catalogs
Software Selection:
Available Usage Examples
E1n E1,2 Ein

Weighted Decision Matrix

=
o
o

Reasonable Documentation

Reasonable Support

Permissive License

E Long-Term Release Track Record
2,n Current Market Momentum

| (Open
+ Clean Source Code
+ Clean Build Process
+ Open Source License

Software Selection (Library):

+ Non-Invasive Programming Model

+ Orthogonal Application Programming Interface
+ Minimum/No Dependencies

+ Non-Copyleft Open Source License

Best Practice Rules .

lection (F k):
Rule 1: the alternatives have to be + Orthogonal Application Programming Interface
really reasonably comparable. +Adequate Dependencies
+ Non-Overlapping Scope
+ Non-Copyleft Open Source License

Rule 2: the best rating should be a least
Decision for Abest 10% above the second best rating.
Rule 3: the best rating should cover at least Software Selection (Tool):
80% of the requirements. + Clean Deployment Procedure
Rule 4: the Weighted Decision Matrices should + Pleasant Command-Line Interface
cover at least all grand decisions.

Notice

Decision Making Process

It's about subjective decision transparency, (A
not about objective decision making! + Clean Deployment Procedure

+ Pleasant Graphical User Interface
Establish %;gggg Weight Criterias
Criterias Hievarchically (simply or AHP)

Meets Functional Requirements

Meets Non-Functional Requirements

Adequate Technology Overhead

Single Dependency Direction

Distance to State of the Art (“modern”)

Distance to Most Simple Approach (“adequate”)
Distance to Mainstream Approach (“mainstream”)
Documented Architecture Decisions (“rationales”)
Documented Architecture Views

Documented Architecture Perspectives (NFR)

Find Sort Alternatives
Alternatives Sequentially

Determine Evaluate
Alternatives Alternatives
Ranking against Criterias

In order to make qualitative decisions transparently Now all alternatives are evaluated against all criteria.

and comprehensibly (but not necessarily objective) and With few criteria and many alternatives, one can

at the same time to document the decision-making evaluate all criteria per alternative. If there are many

process, one can apply the method of the Weighted criteria, it is advisable to evaluate all alternatives per

Decision Matrix. criterion. As an evaluation scale, it is advisable to use -2,
-1,0,+41, +2, in order to have a middle (0), positive/

The prerequisite is that the decision to be made is the negative evaluations (+1, -1) and positive/negative

choice of one of many alternatives. These are entered in superlatives (+2, -2).
a spreadsheet as columns. Optionally, the alternatives

can be put into a meaningful order. Finally, for each alternative, the product sum of the
criterion weighting column and the alternative rating

Then one specifies different criteria, which are to be column is calculated. The decision is then made for the

used for the decision. The goal is to distinguish the alternative with the maximum amount in the product

alternatives with as less criteria as possible. Each sum.

criterion is given a weighting. Optionally, the criteria

can be grouped into a hierarchy and the groups into a Questions

meaningful order.

© How to make the qualitative decision to choose
one of many alternatives can be made
transparently and comprehensibly and document
it at the same time?

Subsequently, one determines a weighting for each
criterion, which indicates how strongly the criterion is
considered in the decision-making process.

& woons Focus Area Maturity Model TUTI
B

-
o
N

Matrix Structure

Maturity Id: <unique id of focus area>

Scale
Name: <unique name of focus area>
B s c Id: <unique id of focus area>
Level: <unique letter of maturity level>
Name: <unique name of capability>
Goal: <purpose the capability serves>
Action: <steps how to meet the capability>

Prerequisites: <optional references to Id/Level>
References: <optional external references>

Maturity Level Prerequisites

Notice: Maturity Levels are inherently
ordered within their Focus Area, but

MGE"‘:d'ie‘Y optionally also form a dependency graph
by cross-referencing Maturity Levels of
other Focus Areas.

Matrix Design Process Maturity Decision Process

Maturity Grade Zero

Notice: the Maturity Scale always starts
with 0, because an organization might not
be able to fulfil a Focus Area at all, i.e.,

it might to not even be on Maturity Level A.

Determine
maximum

Determine

minimum

Maturity Grade of
Organization

Organize
Focus Areas
Hierarchically

Maturity Level
of organization

(]
\ = o1 for each Focus Area

Define Maturity
Levels for each
Focus Area

Map Maturity
Levels onto’
Maturity Scale

Maturity Grade Determination

Determine minimum Maturity Level

fulfilled by an organization and project
from Maturity Level onto Maturity Scale.

The Focus Area Maturity Model (FAMM) is a method to In order to determine the Maturity Level of an
assess the maturity of an organization with respect to a organization, determine for each Focus Area the
specific topic area. maximum Maturity Level the organization fulfills. The
Maturity Level of the organization is then derived from
The structure of a FAMM is a matrix of horizontal Focus the minimum Maturity Level across all Focus Areas and
Areas and their their Maturity Levels and possible the projection of this Maturity Level onto the Maturity
vertical Maturity Grades on a Maturity Scale. Per Focus Scale.
Area there can be one or any number of Maturity Levels
and and their positions on the Maturity Scale are based Since the Maturity Levels should only ever be
on the importance of the Focus Areas and the positioned in the matrix above Maturity Grade 0, in the
relationship between the Focus Areas and their worst case, an organization has a Maturity Grade 0 if it
Maturity Levels. This matrix is designed in a first step for does not fulfill a Focus Area at all.
a topic area and is then fixed.
Questions
@©® From whom can you determine the maturity level
with the Focus Area Maturity Model (FAMM)?

W ARCHITECTURE
f FUNDAMENTALS

Vote is a portable mobile-first designed
application for easily performing
anonymous online votings within a
small group of people to figure out their
opinions or moods.

Votings are created in advance,
executed at a certain time, conducted
by the users, and then finally reported.

Actor Role Use-Case

User Register Account
Recover Account
Configure Account
Login Account
Logout Account

Author _ Create Voting
Grant Voting Access

Supervisor Execute Voting
Enable Question
Display Result

Voter Vote Question
Display Result

Quality Expectation
Cross-Platform Client yes
Non-Cleartext Password Storage yes
Minimum Concurrent Voters (people) 50
Maximum Display Result Latency (sec) 1

Aspect Amount _Size Total Size Unit
Account Data 10000 256 2.560.000 B
Voting Data 10000 1.024 10.240.000 B
Server RAM Usage 200 20 4,000 MB

(Example)

1) Creation Step

RE) Requirements Engineering

Big Picture o)

o Elevator Pitch (Re[D)

Name, Purpose, Motivation,

Actors, Devices.

Rationale: Roughly describe the
purpose and primary motivation.

Format: Prose Abstract

e Customer Journey @@

VA

Rationale: Sketch the customer
journey through major use-cases.

Actor Roles,
Use-Cases.

Format: 2xN Table or UML UC Diag.

o Quality Requirements (@
Qualities,

Expectations.

Rationale: List requirements on

the major non-functional qualities.

Format: 2xN Table

a Sizing Sketch (SW[T)

Aspects, Amounts,

Sizes, Total Sizes, Units. ll(®)]‘

Rationale: Sketch the sizing of
major entities and system parts.

Format: 5xN Table

(Method)

UX) User Experience

In order to understand a Business Information System
to be created at a very early stage, a so-called Big
Picture should be created. This can be developed
according to the method 8-D of Dr. Ralf S. Engelschall,
which consists of 8 dimensions (4 domain-specific and

4 technical ones).

In the first step, an Elevator Pitch is created, which is
defined by Name, Purpose, Actors and Devices to give
a rough overview of the solution. In the second step, an
additional Crux Flash is created, which roughly
describes the functionality and its main cruxes. Both
steps usually consist of only a few prose sentences.

In the third step, a Customer Journey is outlined, which
is describe, via Actor Roles and Use Cases, which use
cases the different actor roles experience. This usually
consists of only a 2-column table.

In the fourth step, a Dialog Storyboard is illustrated,
which is shown via Dialogs, Interactions and Control
Flow, and which illustrates the user interface the
application offers. This usually consists of a graph of
Wireframes (intentionally very rough and fuzzy

sketches of the dialogs).

SY) Systems Architecture

TECHNISCHE
UNIVERSITAT
MUNCHEN

Votings can be quickly accessed by QR-
code or URL and are based on one or
more questions and corresponding
multiple-choice-based answers.

Votings are interactively conducted,
and answers are received and reported
either asynchronously in batches
(offline voting) or even synchronously in
real-time (online voting).

e Crux Flash (Re[D)
Functionality, N ! <
Cruxes. @

Rationale: Roughly describe the
functionality and the cruxes.

Format: Prose Abstract

c Dialog Storyboard @®

Dialogs, Interaction, ,.@
Control Flow. t J

Rationale: lllustrate the major user
interface dialogs (or dialog types).

Format: Wireframe Graph Diagram

e System Architecture &)@

Actors, Systems,) : 8
Zones, Programs. L’@‘J

Rationale: lllustrate the major
system architecture components.

Format: Boxes'n'Lines Diagram

e Data Model (Sw(T)
Entities,
Relationships. E

Rationale: Model major data
entities and their relationships.

Format: UML Class Diagram

(Example)

W Software Architecture D) Domain Scope T) Technology Scope

In the fifth step, the Quality Requirements are listed
via Qualities and Expectations, to show which
expectations exist concerning non-functional quality
properties. These are usually executed as a 2-column
table.

In the sixth step, the System Architecture is illustrated,
which via Actors, Systems, Tiers/Areas and Programs
shows, which main components will exist on the level
of System Architecture. This usually consists of a
“Boxes'n’Lines” diagram.

In the seventh step, the Data Model is modeled, which,
via Entities and Relationships, shows which main
domain-specific classes and relationships the data of
the application has. This is usually represented as a
“UML Class Diagram”.

In the eighth and last step, a Sizing Sketch is created,
which shows via Aspects, Amounts, Sizes, Total Sizes
and Units, which orders of magnitude (in the “worst
case”) are to be expected with the data and the system
components. This usually consists of a 5-column table.

Questions

@ What are the eight dimensions of the 8-D model
supposed to do?

W ARCHITECTURE
f FUNDAMENTALS

TECHNISCHE
UNIVERSITAT
MUNCHEN

6

Viewpoints & Perspectives

Development 5

Aspects of the software development
process for versioning, building,
testing, maintaining, and enhancing
the system.

Context

Relationships, dependencies, and
interactions between the system and
its run-time environment (people,
systems, external entities).

Functionality

System's functional elements, their
responsibilities, interfaces, and
primary interactions (control flow).

Deployment

Required technical environment and
mapping of software elements to
runtime environment that will
execute them.

-
N
[N

3

Information

Operation

Aspects to operate, administer,
update, upgrade and support the
system when running in its
production environment.

Static data structures and information
flows to store, manipulate, manage,
and distribute information.

Concurrency &

N Concurrency structure of the system
and mapping of functional elements
to concurrency units (processes,

ﬁ threads, transaction scopes).
Development Process Viewpoints Application Architecture Viewpoints

Application Overview Viewpoints Operation Process Viewpoints

Evolution & Change

Ability of the system to be flexible in
the face of the inevitable change that
all systems experience over time.

Regulation & Compliance

Ability of the system to conform to

Intermationalization & Localization
Ability of the system to be
independent from and adaptable to
any particular language, country, or
cultural group.

Usability & Accessibility
Ability of the system to allow people

Performance & Scalability
Ability of the system to predictably
execute within its mandated
performance profile and to handle
increased processing volumes.

Availability & Resilience
Ability of the system to be fully or

Constraints & Resources

Ability of the system to be designed,
built, deployed, and operated within
known constraints around people,
budget, time, and materials.

Security & Recoverability

local and international laws, quasi-
legal regulations, company policies,
and other rules and standards.

to effectively interact with the system
and also to be even used by people
with disabilities.

Ability of the system to reliably
control and audit who can perform
what actions on what resources and
to detect and recover from failures.

partly operational when required and
to effectively handle failures.

Cross-Cutting Perspectives

In order to create an Architecture Description (in the
German context usually called IT-Konzept) for an
application, one documents methodically via
Viewpoints and Perspectives.

The former are 2-dimensional diagrams with an
explanation of a single specific fact. The latter are
explanations of an overall issue, all of which are derived
from Non-Functional Requirements.

How many Viewpoints and Perspectives actually need
to be documented depends on the Concern of the
Stakeholders! A standard set of Viewpoints and
Perspectives is the following.

For the Viewpoints it makes sense to document for
instance 7 particular Views: Context, Functionality,
Information, Concurrency, Development,
Deployment and Operation. The two viewpoints
Functionality and Information are the two most
important ones to document the architecture of an
application. They should always be documented and,
therefore, never omitted!

For the Perspectives, it makes sense to document for
instance 8x2 particular Aspects which are based on
common Non-Functional Requirements: Evolution &
Change, Regulation & Compliance,
Internationalization & Localization, Usability &
Accessibility, Performance & Scalability, Availability &
Resilience, Constraints & Resources and Security &
Recoverability. For the Perspectives in practice one
has to take into account all the relevant Non-
Functional Requirements relevant to the project and
must not limit oneself to just these usual ones.

Questions
© Which two Viewpoints in the Architecture

Description of an application should always be
documented?

P

16681 126-0-8L6 NGSI L 102 P3 PUZ L2INI3UUIY SIS SUeNyo

	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions
	Questions

